邢唷��>� #%��� !"����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������欹�€ ��u�bjbj碫碫 >��<�<c�7�������PP� � G#G#G#����[#[#[#8�#�w%l[#襨@�%��&�&�&�&�(�(�(!k#k#k#k#k#k#k$r�磘�GkEG#[3�(@�([3[3Gk� � �&�&�宬�:�:�:[3d� ��&G#�&!k�:[3!k�:�:6誗��"��&����濈q喫[#�6,mU k0襨塙猽�8B猽88猽G#賊4�(�+*�:.��/��(�(�(GkGk-:j�(�(�(襨[3[3[3[3��������������������������������������������������������������������猽�(�(�(�(�(�(�(�(�(P Y:  Uncertainties in the governance of animal disease: an interdisciplinary framework for analysis Robert Fish1#*, Zoe Austin1, Robert Christley2,3, Philip M. Haygarth1, Louise Heathwaite1, Sophia Latham2, William Medd1, Maggie Mort4, David M. Oliver1`", Roger Pickup5, Jonathan M. Wastling3, Brian Wynne6 *Corresponding author: r.d.fish@exeter.ac.uk 1. Lancaster Environment Centre, Lancaster University, Lancaster, UK, LA1 4YQ 2. National Centre for Zoonosis Research University of Liverpool Veterinary School Leahurst Chester High Rd, Neston Wirral CH64 7TE 3. Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK, L697Z 4. Department of Sociology and Division of Medicine, Lancaster University Lancaster LA1 4YT 5. Biomedical and Life Sciences, Division School of Health and Medicine, Lancaster University, LA1 4YQ 6. ESRC Centre for Economic and Social Aspects of Genomics, Cesagen, Lancaster University, LA1 4YD, UK #Current address: Centre for Rural Policy Research, University of Exeter, Devon, UK, EX4 6TL `" Current address: School of Biological & Environmental Sciences, University of Stirling, Stirling, FK9 4LA, Scotland UK Philosophical Transactions of the Royal Society B ABSTRACT Uncertainty is an inherent feature of strategies to contain animal disease. In this paper an interdisciplinary framework for representing strategies of containment, and analysing how uncertainties are embedded and propagated through them, is developed and illustrated. Analysis centres on persistent, periodic and emerging disease threats, with a particular focus on Cryptosporidium, Foot & Mouth Disease and Avian Influenza. Uncertainty is shown to be produced at strategic, tactical and operational levels of containment, and across the different arenas of disease prevention, anticipation and alleviation. The paper argues for more critically reflexive assessments of uncertainty in containment policy and practice. An interdisciplinary approach has an important contribution to make, but is absent from current real world containment policy. Keywords: animal disease; containment; uncertainty; policy; interdisciplinarity. 1. INTRODUCTION This paper examines uncertainties associated with strategies to contain animal disease. In general terms, uncertainty analysis is a way of assessing, to varying degrees of statistical and analytical precision, limits to reasoning and understanding1, 2 . Uncertainty is an inherent and inescapable attribute of decision making processes that aim to prevent, anticipate and alleviate animal disease. Encompassing a range of procedures and priorities, governance arrangements for containment are both institutionally and scientifically complex. The extensive, open and highly unstructured character of disease threats means that interventions come with few guarantees. A range of techniques, originating from within the sciences, are available to decision makers to explain the character and significance of uncertainty across different aspects of disease containment. These include, for instance, probabilistic and qualitative assessments of emerging threats, outbreak behaviour and the efficacy of mitigation measures. In principle, therefore, uncertainly analysis is a way of informing decision makers about the extent to which particular outcomes can be inferred from available knowledge, hedged by cautions against unrealistic aspirations for science within procedurally rational decision making. Important though these techniques are, they cannot reveal how and why uncertainties come to be embedded in the policy and practice of containment, and indeed, what role institutional arrangements for animal disease governance may play in perpetrating them. An understanding of these issues requires a much broader treatment of the priorities and functions of containment systems and how scientific, and other forms of knowledge, are viewed, interpreted and deployed in relation to them. This paper provides a framework for such an approach. It examines how and why uncertainties emerge in the arenas of disease prevention, surveillance and control and examines their strategic, tactical and operational expressions. The origins of this paper are in interdisciplinary research. Its insights arise from an initial analysis of expert interviews, policy documentation and scientific evidence from a three year study of uncertainties in animal disease containment, undertaken by a research team of veterinary scientists, sociologists, biologists, geographers and political scientists. The general framework we develop emerged from a process of group discussion and learning between researchers working from different theoretical and empirical starting points: examining the procedures and assumptions that guide recognition of uncertainty in natural scientific terms and assessing the institutional context and circumstances in which knowledge is created and deployed for particular containment ends. The framework is not designed to encompass all aspects of uncertainty analysis in disease containment, but rather to function as a heuristic for thinking about uncertainty in an integrated and cross-disciplinary way. The framework is illustrated primarily by reference to three animal diseases: Cryptosporidium, Foot and Mouth Disease (FMD) and Avian Influenza (AI). Each exemplifies different epidemiological characteristics in a UK context: Cryptosporidium is endemic and zoonotic; FMD is exotic, notifiable and non-zoonotic; AI is notifiable, exotic, newly emerging and potentially zoonotic. Each differs markedly from the others in terms of pathogenicity, rates of evolution and transmission routes. The governance arrangements for containment of each are distinct. However, in this paper we aim to develop a framework designed to identify generic - cross disease - parameters for the analysis of uncertainty in containment practice. The paper begins by presenting a general conceptualisation of strategies of containment and their associated uncertainties. An overview of the key theoretical terms related to uncertainty analysis is then provided, drawing on examples from each of the diseases. Using this framework a detailed analysis of the uncertainties associated with strategies of containment is developed and illustrated in the context of three key arenas of practice: prevention, anticipation and alleviation. The paper concludes by highlighting practical learning responses from this analysis for policy development and the related role of interdisciplinary research. 2. STRATEGIES FOR CONTAINING ANIMAL DISEASE: GENERAL CONCEPTUALISATION In this paper containment is interpreted broadly. It is taken to encompass the whole cycle of disease containment, from issues of prevention and surveillance to those of recovery and control. Alongside issues of disease morbidity and mortality in non-human populations, containment is also understood to incorporate the wider zoonotic and non-zoonotic burdens of animal disease, including human livelihoods, health and well being, and more generally, political and institutional capabilities and reputations. In particular our conceptualisation encompasses three key arenas of action: Prevention: or reducing the occurrence of animal disease. The focus here is on taking pre-emptive forms of action that reduce the chances of a disease outbreak, such as regulating zoosanitary practices on farms, investing in new technical infrastructures to limit disease transmission within livestock populations, or changing livestock management practices. Anticipation: or acknowledging a potential animal disease threat and predicting and preparing for disease outbreaks. This arena of practice includes building capacities to identify failures of prevention through earliest possible disease surveillance. It also encompasses experimental modelling of disease scenarios and the design and testing of contingency planning arrangements. Alleviation: or the process of responding to disease-occurrence. The focus here is on the procedures adopted to control and eradicate disease in real world circumstances. This includes associated technical functions such as modelling and projecting outbreak behaviour and restricting the wider burdens and legacies of disease, such as managing the long term repercussions of outbreaks for affected individuals and communities. Furthermore, our conceptualisation is designed to recognise that each of these strategies have different forms of expression according to the level of policy practice. In particular we distinguish between: The strategic level: structures and processes that directly or indirectly shape underpinning principles of containment. This can include policy activities and networks with formal responsibilities to produce these strategies, also includes the political, economic, regulatory arrangements prescribing the scope, ambition and remit of containment practice. The use of legislation to mandate stakeholders to act on disease risks, such as the continuous sampling of oocysts in the UK under the 1999 Cryptosporidium Regulations, or to extend state powers to act on disease, such as the preventative and control powers under the UK抯 Avian Influenza Order 2006, would be example of a high level strategic process. The tactical level: where strategic level goals are translated into practical rules, procedures and tools for decision making. Tactical level activities are essentially a context in which underpinning rationales for containment are given procedural expression. For instance, making decisions regarding how water should in practice be monitored, such as the design of sampling arrangements, or use of particular types of technical instrument, is an example of a tactical process. Another is the development of criteria for intervening in AI disease outbreaks, such as the creation of surveillance protection zones, or the design of preventative measures, such as compulsory registration of poultry owners. The operational level: practical contexts of disease containment, in all their variety. Operational level activities are variegated systems of technological and human practice. In principle they should be the outcomes/repercussions of strategic decisions for containment and the practical expression of tactic. Examples of operational practices include activities in diagnostic laboratories, the process of vaccinating birds or livestock, the implementation of biosecurity measures at livestock markets, or the technical process of providing and handling water samples. The generalised nature of this conceptualisation should be emphasised. Making the analytical distinction between 慳renas� and 憀evels�, for instance, is likely to be readily identifiable to policy and decision makers, and indeed, is sufficiently generic to be relevant to both different categories of animal disease, for instance, endemic and exotic, and different spatial and temporal scales of containment, such as a localised outbreak of Cryptosporidiosis or a national outbreak of FMD. A visualisation of these dimensions of containment, and how they interact, is provided in Figure 1, taking the example of AI. It is by following the interactions between these arenas and levels that many of the uncertainties associated with strategies of containment can be identified and accounted for. First, uncertainty may be situated within a particular level/arena. For example, at the operational level of anticipation veterinary practitioners may fail to recognise clinical signs in animals affected by FMD.. Second, uncertainties may emerge as we move between different levels of policy practice. For example tactics may be ignored, circumnavigated or misunderstood at the operational level, such as moving animals when restrictions are in place. Third, uncertainties may emerge as we move between different arenas of the containment cycle, such as uncertainties of alleviation being amplified because of delays in disease notification; that is, because of failures of anticipation. In the following sections of the paper we provide a non exhaustive treatment of these dimensions of uncertainty. To begin approaching this task we provide an overview of the different ways uncertainty can be interpreted, drawing on simple illustrations from each of the case study diseases. 3. UNCERTAINTY: GENERAL THEORETICAL PROPOSITIONS A range of taxonomies and accounts of uncertainty have emerged within the scientific and social scientific literature1,3,4,5 (Figure 2). A common theoretical proposition of this work is that uncertainties can be distinguished according to the degree which reasoning about a given problem or issue departs from a de facto scientific ideal of determinate (i.e. certain) knowledge. Thus, in the context of infectious disease we know in the most general sense that agents including viruses, bacteria and parasites cause disease when they come into contact with a suitable host; but it is not certain that they will cause disease in every case. This may be due to a range of factors characteristic of both the host and the pathogen such as natural or acquired immunity, genetic variability, and so on. An important distinction within uncertainty analysis concerns whether an uncertainty can be expressed in probabilistic terms, that is, where frequency distributions can be inferred for a known set of outcomes. Probabilistic uncertainty is sometimes referred to as 憇tatistical uncertainty� or 憌eak uncertainty�, but most commonly, 憆isk�. There are numerous examples in disease of factors which lend themselves to some form of probabilistic treatment. So, for example, in the case of Cryptosporidium it is possible to calculate a theoretical risk of exposure posed by drinking a glass of contaminated water, provided we know basic parameters such as how many oocysts per litre are present in the water supplied, their viability and the volume of water in the glass. This type of uncertainty can be contrasted with situations in which a range of possible outcomes are known, but probabilities are not. Here, decision making proceeds on the basis of broader approximations and best guesses. This latter type of uncertainty is sometimes referred to as 憇trong uncertainty�, 憇cenario uncertainty�, but most commonly, simply 憉ncertainty�. For instance, during an outbreak of FMD policy makers may reasonably ask: 揾ow long will this disease outbreak last?�; or in the case of an outbreak of avian influenza, 搘hat is the risk of the emergence of zoonotic genotypes?� Researchers may not be able to respond to these questions in probabilistic terms but experience may grant them some understanding or 憇ense� for the types of outcomes more or less likely to occur. Importantly, both 憇trong� and 憌eak� uncertainty may be driven by assumptions that may be exposed as fallible by way of surprising and unanticipated results. In other words, there may be unrecognised shortcomings in the capacity of available knowledge to identify outcomes, or describe systems effectively, regardless of whether they can be expressed probabilistically. This form of unrecognized uncertainty is commonly termed 慽gnorance�. So for example when the first cases of Bovine Spongiform Encephalopathy (BSE) in UK cattle arose, former unquestioned assumptions were broken by the emergence of a new paradigm by which an infectious disease could be spread in the food chain independently of viruses, bacteria or parasites. Only when the role of prion disease became better understood was it possible to re-engage probabilistic assessments in the building of animal and public health policies with respect to transmissible spongiform encephalopathies. Risk�, 憉ncertainty� and 慽gnorance� may elicit two types of reaction/response. First, they may be thought to reflect practical failures in the way information is acquired (such as measurement uncertainty, due to sampling errors, inaccuracy or imprecision). These are often collectively referred to as epistemic or reducible uncertainties; the assumption being that, by overcoming shortcomings in technique and method, risk will be better represented and controlled, uncertainty will narrow, and ignorance diminish (i.e. systems will become more determinate). For example, an epistemic practice in disease containment would be to improve methods of surveillance, such as endeavouring to reduce human errors in oocyst identification in water treatment works as the basis for improving detection rates for Cryptosporidium. Another would be improving calibration methodologies within epidemiological modelling to validate further the trajectories of hypothetical FMD and AI outbreaks. Second, these risks, uncertainties and ignorances may be assumed to be the product of systems that exceed scientific capacities to rationalise them. These are often collectively referred to as ontological or irreducible uncertainties. The dynamics of weather patterns and its influence on airborne transmissions of FMD would be an example of indeterminacy. Indeterminacy emphasises that causal chains and networks of complex social and technological systems, such as disease containment, are often open, emergent and highly context specific, and therefore persistently defy prediction and control (i.e. systems are indeterminate). In practical terms it is an idea closely associated with the arguments for adaptive management; that is, approaches to disease control that are responsive to local contingencies and changing conditions. Both ontological uncertainty and epistemic uncertainty have an ethical dimension as well 6, opening up science and policy to deeper philosophical uncertainties of principle and conduct. Ontological uncertainty raises the questions: what do we seek to achieve and why? For instance, what priorities should dictate the policy significance of disease, and accompanying commitments of resource to containment systems? On what basis do we assign relative significance to AI, FMD and Cryptosporidium, and more broadly, to biological risks over other potential sources of harm: radiological, chemical and so forth? The answers to these questions are less than clear cut. Epistemic uncertainty, in turn, raises further questions: in particular, how do we arbitrate on the fairness of a potential intervention when faced with contingent knowledge, scientific or otherwise, and a range of known and unknown outcomes, and where it is inevitable that there will be both winners and losers? Often these questions are interpreted through technocratic processes, such as policy appraisal and regulatory impact assessment in government, where the costs and benefits of action are assessed. A useful example of this type of approach to reasoning would be the use of numerical scoring and weighting procedures to rank diseases against different criteria of significance7 and thereby establish priorities for resource allocation. In the UK, for instance, this approach is used by the responsible government department as part of its disease prioritisation. It has assessed diseases on the basis of 39 different criteria, each assigned varying importance within the overall scoring scheme, and spanning such epidemiological, economic and institutional questions as public health and animal welfare, consequences for industry and economy, the scale of government effort involved, as well as legal obligations and ramifications8. At the practical level of assessment, these methodologies are uncertain because they typically produce judgments of overall disease importance by blending together available scientific evidence with surrogate - expert informed � datasets. The latter are employed in (the many) situations where scientific understanding is weak, or indeed, entirely absent. Indeed, as Krause9 shows in an overview of approaches taken in different national settings, elicitation involves methodologies for collecting 憃pinion� - usually by way of survey and group techniques. However, the general point is that the composite and numerical nature of the scoring process creates an illusion of confidence about priorities where irreducible uncertainties and contingencies may actually be in play. This applies even where judgments appear to be based on competent scientific knowledge, since any given criterion in the prioritisation process is itself open to different types of interpretation. Take for instance, the criterion of 憇everity� as a marker of significance, and consider this in relation to the diarrhoeal disease of Cryptosporidiosis. As one interviewee in our research suggested, official medical literature persistently characterises this as a 搈ild self-limiting illness�, but: 搃f you spoke to someone who had had clinical Cryptosporidiosis ...[ ]... and said 憏ou have got a mild illness�, they would slap you because people can get very poorly�. In other words, these approaches are based on a pragmatic calculus that often belies the deeper ethical complexity of policy choices. 4. UNCERTAINTIES OF PREVENTION In this section we consider how uncertainties are embedded in the strategic, tactical and operational dimensions of prevention. By definition preventive measures extend patterns of innovation and action in disease containment beyond that of preparedness and control. At an operational level these measures may be applied at a variety of spatial scales, such as promoting zoosanitary practices on farms to mitigate the emergence of AI or FMD or instituting barrier controls, such as import control measures, at the national level. Part of the strategic reasoning behind the use of preventive measures is that they reduce resource burdens felt elsewhere in the containment cycle. In many, but by no means all cases, costs associated with alleviation and recovery will be orders of magnitude higher than investments in preventative measures. Relatedly, because prevention extends patterns of knowledge acquisition, innovation and action beyond the issue of post outbreak measures alone, new communities of interest in animal disease containment may be revealed, and overall costs and responsibilities of containment therefore further diffused. While commitments to prevention are a logical aspiration for policy and decision makers it does not follow that prevention ensures that containment systems are more resilient to disease outbreaks. The reverse may actually be the case if the preventive tactics employed are too simplistic, such as those that apply measures at a single operational level (for instance, import controls only) or are undertaken to the neglect of developing other facets of the containment system (such as the preparation of contingency plans). The recent emergence of biosecurity as a strategic and organising agenda to prevent the introduction and spread of disease agents is a good example of an unfolding interest in animal disease prevention, one that has found currency at international10 and national levels11. This has resulted in a range of tactical measures � mandatory and voluntary � to cultivate preventive attitudes, behaviours and responsibilities at the operational level. In the UK, for instance, biosecurity has been promoted as matter of routine good practice on farms by government through a recent 慓ive Disease the Boot Campaign� and accompanying advice networks12 . It has also been instituted into Farm Health Planning in the UK, a set of tactical initiatives designed to promote and foster good practice in managing livestock health and welfare risks. Preventive measures create new possibilities for scientific innovation and research within containment, but science often struggles to determine measurable operational 憃utcomes� as increasingly demanded by audit cultures in policy. Prevention can therefore remain elusive to objective standard-setting, but these uncertainties are institutionalised into containment practice because often they arise out of political, rather than scientific, forms of calculation. As Donaldson13 explains, in the case of the UK biosecurity emerged as a public policy term at the height of the 2001 FMD outbreak and as a way of explaining practical measures that could be deployed to alleviate disease spread at the farm level. It was invented to govern and describe appropriate operational conduct, and failings therein, during crisis. Part of his argument is that biosecurity has had to be placed on a scientific footing post hoc. A useful example of the type of problems scientists face in measuring and thereby rendering accountable the efficacy of preventive processes is provided in Cryptosporidium management. Here a range of upstream land, manure and livestock management options, implying varying degrees of capital investment, income foregone, and of practical competence on the part of land managers, are emerging as a means of minimising potential outbreaks of Cryptosporidiosis among water consumers14. This may include employing biosecurity practices on farms (such as cleaning and disinfection) as well as undertaking more fundamental changes to the farm system, such as investing in new technical infrastructures to limit disease transmission within livestock populations, and changing patterns of livestock management. There is a good understanding of the biological variables controlling these systems, but not how they interact especially with human social variables to allow reliable assessment, with probabilistic confidence, of the relationship between measures and risks in any given practical context15. Source tracking technologies, for instance, are rarely employed in real world settings as an active preventive practice, and are operationally difficult even in experimental terms16. Moreover, this science is being applied further away from measurable human health outcomes. While measures to prevent Cryptosporidium in livestock may well reduce incidences of Cryptosporidiosis in humans, intervening variables and steps in the containment process (for instance, raw water treatment) make these relationships impossible to align, and account for, precisely. In any case, scientific uncertainty in measuring the efficacy of these practical initiatives is itself embedded in a less-than-perfect world of operational practice. For example, the practical viability of any given measure depends on individuals possessing, and deploying skills, in ways concurrent with an effective scientific measure, but this cannot be assured. Informal and self-organising networks of knowledge-exchange, for instance among farmers17, is one way of ameliorating these problems operationally. Indeed, the practical cost of systematically enforcing measures, or simply providing advice, involves the law of diminishing returns: required efforts may simply outweigh the level of perceived risk. 5. UNCERTAINTIES OF ANTICIPATION Anticipatory containment is about recognising and planning for potential disease outbreaks. Its broad purpose is to cultivate systems that can respond to disease threats in a timely fashion. A significant aspect of anticipation is the development of disease monitoring systems that embed localized surveillance into national, and ultimately international, assessments of disease emergence. However, comparative national standards for surveillance are highly varied, from real time disease control and prevention to cumbersome manual procedures with a high capacity for human error18. Even within well resourced systems, information of use to surveillance may not be integrated effectively at the tactical and operational levels. For example a recent account of the UK Veterinary Surveillance Strategy by Lowe19 has pointed to national level surveillance of animal disease risks as disinclined to incorporate data from 憃n the ground 慶linical observations, such as from veterinarians and industry stakeholders, relying instead on laboratory testing and reporting arrangements. Furthermore, because surveillance data often passes through a range of monitoring and reporting stages patterns of disease emergence may be underestimated. Take, for example, reporting procedures surrounding Cryptosporidiosis. In the UK, reporting of this disease depends on information transmission through a complex architecture of self-reporting, stool sampling, laboratory testing and notification. Infections may remain undiagnosed because individuals choose not to report symptoms. In turn, a general practitioner in the UK may not choose to take faecal samples so nothing would be reported to laboratory surveillance. Not all hospital laboratories will test for Cryptosporidium, and where they do, there is no guarantee that all samples will be tested. Moreover, methods of detection typically involve the staining and microscopic examination of faecal specimens, but it has been suggested that this fails to detect about half of all Cryptosporidium infections20. In this particular case, general technological innovations in containment practice could change case-ascertainments significantly. For example, molecular techniques in laboratory testing , would increase reported rates of infection, while technological innovations in water monitoring, such as the use of real time Polymerase Chain Reaction (PCR) amplification of DNA, could improve rates of detection, thereby enhancing overall system preparedness. Yet not only would such innovations imply commitments of resource, they depend on readiness for uptake. For Cryptosporidium, though, it is questionable whether water industries would readily innovate in systems that are producing low detection rates in treated water. An important further point of note about anticipation is that surveillance systems inevitably reflect a restricted body of knowledge on disease behaviour and therefore may be fundamentally ignorant of emergent risks. This may be unimportant where the risks are relatively low. For instance, in 2008, a previously unrecognised Cryptosporidium rabbit genotype was linked to an outbreak of Cryptosporidiosis in Northamptonshire, UK and this has been incorporated in to existing containment practices as a potential low level, background threat21. In other instances, the consequences of ignorance can be more paradigmatic. The recent emergence of Influenza A (H1N1) virus � 憇wine flu� - is a good example, as was the emergence of the neurodegenerative disease BSE in cattle in the 1980s and the variant Creutzfeldt-Jakob disease (CJD) in humans. In these circumstances of revealed ignorance and surprise, institutional ability to recognise and adapt becomes paramount as the new disease scenario unfolds. For instance, the emergence of H1N1 brings the potential for recombination with highly pathogenic AI (H5N1) and the development of new, and more virulent, strains with a wider host range. New - often hybrid - platforms for anticipatory research therefore begin to emerge as ex ante priorities are reassessed. While strategic level prioritisation regularly seeks to update priorities (i.e. tactics) on the basis of research and intelligence precisely to avoid this ignorance of system change within anticipatory arenas, the point still holds that emergent conditions for disease can pass entirely unrecognised, until they have gone past tipping points. This is as true for ostensibly 慿nown� diseases as it for system 憇urprises�. Take for instance, changing attitudes to FMD in the UK. It is now widely recognised that the intensification and concentration of market systems for livestock in the years preceding the 2001 outbreak had not only exposed the UK system to greater unnoticed risk of disease-emergence, but by orders of magnitude higher than for previous crises. However, these systemic and gradual developments took place during an extended 慸isease-free� period in the UK. Not only did the visibility of the disease within political, public and expert discourses tacitly wane22, but institutions and society 慺orgot� the necessary skills and capacities needed to identify and cope with a future outbreak23 . In principle, randomised surveillance would be one means by which system ignorance may be engaged with proactively, and at the same time, allowing the prevalence of known disease threats to be rechecked. However, what constitutes effective randomised surveillance in biological terms is itself unclear, and may in any case be implausible on the wider grounds of proportionality, not least the costs entailed. To some extent, uncertainties in disease identification may be anticipated through systems of quality audit and control. In these cases anticipation is more effective because the system is already predicated on uncertainty. Technological systems for surveillance and the sampling methodologies that accompany them may, for example, observe risks at one step removed from disease occurrence, such as through the use of 慽ndicator organisms� to demonstrate potential pathogenic presences in waterborne disease. For example, faecal indicator organisms (FIOs) such as generic E. coli are used in water quality assessment as an 慽ndicator� of the ingress of sewage/wastewater into drinking water. But FIOs are not themselves a significant health hazard; rather they suggest the potential presence of pathogenic microorganisms (whether bacterial, protozoan or viral). Debates consequently prevail on the validity of some FIOs as surrogates for bacterial, protozoan and viral pathogens24 but many regulatory bodies across the world currently use these indicators to monitor microbial water quality. Even if we were to accept that what is being monitored may lead to disease, acting on this information to protect human health may be impeded by the context in which information is interpreted. Consider again Cryptosporidium in the UK. Until recently it was the privatized water industry working in the context of water quality standards (i.e. arenas of prevention and anticipation), rather than public health outcomes (i.e. arenas of alleviation and recovery) that defined priorities for a significant area of the containment system. Yet, although water quality standards may be used as analogues for public health outcomes, they are not substitutes. For example, before 2008 water industry regulations stipulated that, on average, no more than one oocyst per 10 litres of water sampled was allowable in treated water. However, under this system oocysts could be detected above the threshold but not necessarily result in a disease outbreak; just as detection below this threshold could lead to disease despite being permissible. Partly for this reason these Cryptosporidium monitoring requirements were revoked, requiring the water industry to create 慦ater Safety Plans� in which comprehensive risk assessments are undertaken, thereby aligning priorities more directly to health outcomes. Anticipation and preparedness also encompass basic and applied scientific research into disease behaviour under future outbreak scenarios. In this vein there is an emerging tradition of tactical research simulating animal diseases using modelling techniques, such as examining the propagation of H5N1 within the British poultry industry 25,26, 27 and FMD in the livestock sector28,29. These approaches provide contexts in which policy options for disease control and risk assessment can be built into system preparedness, though from experience they are often poor decision making tools for disease alleviation (see below). Perhaps not surprisingly the specification and parameterization of these models, and their accompanying evidence base, has often been identified as highly uncertain30,31. Parameter estimation, an essential part of model development,爄s frequently based on data considered to be comparable to the system under study, whilst clearly being different. For example, because of the paucity of data specific for H5N1 transmission in the UK, models have relied upon extrapolation from other infectious agents, including those as different as bacteria25. Further, these models attempt to provide detailed representations of the potential transmission contacts between explicitly located populations of poultry (e.g. farms). However, such爉odels are, by definition, incomplete and highly simplified system representations, and the requisite parameter values and data are uncertain. An important related element of model building is therefore model evaluation, and in particular, the use of sensitivity analysis (where parameter values are varied across what is considered to be a plausible range). This can be used to explore 憄arameter space� i.e. plausible values given current knowledge. However, what is爈ess commonly acknowledged is the爄mpact of model specification itself, including on the interpretation of model sensitivity analysis. Hence,爄f a model is insensitive to爒ariation in a爌articular parameter, it may be assumed that爉ore燿etailed knowledge of this parameter is not needed; but it is not usually acknowledged that this inference relates only to the model in question, rather than some fundamental 憆eality�. Thus, there are important domains of usually unstated scientific ignorance which underlie policy and may compromise its robustness. An important point here is that decisions regarding model specification themselves inevitably reflect a restricted body of knowledge and represent judgements on what aspects should be included or excluded. Relatedly, the research underpinning this paper is revealing the dilemmas faced by scientists when putting models into the policy domain of animal disease. As one put it, there is a prevailing perception among policy makers that models are 搒ome kind of forecast 匸like]厀eather forecasts匸and]� econom[ic] forecasts匸 ]匒nd somehow that they抮e including everything�. And yet, as this respondent put it, for a scientist working in these applied worlds of animal disease policy: 搃t抯 very dangerous to say you don抰 believe this model before you start. It抯 quite a hard trick to pull off to convince the policymaker that the model has value and should be believed and they should base their policy on it, and at the same time explain that actually the model, it抯 not true, is wrong.� Modellers working on animal disease were, it was suggested, 揺ngineers� of the model � and thereby attentive to model faults - but simultaneously 搒alespeople� wanting their work to assert influence on the consumer (i.e. policy users). It is hardly a novel observation within academic discourse to suggest that the value of model building lays as much in its capacity to assist 憀earning about� uncertainty as it does to serve the creation of 憄redictive truth-machines�32. However the placement of highly experimental epidemiological modelling research within policy development often presumes the latter. As it was put by one respondent in our study 揳s far as [policy customers] are concerned you know, these models are reality in a computer which you turn the handle and it tells you what抯 going to happen�. 6. UNCERTAINTIES OF ALLEVIATION A key uncertainty governing alleviation processes surrounds issues of purpose: what is it we seek to achieve and why? This is not only a matter for policy commitment, but also affects related knowledge development and selection. The answer to these questions is often ambiguous. In a purely epidemiological sense, aspirations for containment may be expressed around commitments to reduce or eradicate disease. Yet this concern invariably accompanies a range of other needs: for minimal duration; to restrict burdens on industries and communities; to maintain trust in institutions; to minimise over-reaction; to be cost efficient; to share responsibility; to be humane; and so forth. In other words, disease-containment is not reducible to a single notion of purpose or effective outcome, nor by implication, to a single criterion against which uncertainties may be judged. At the highest levels of strategic political discourse this tension is in play. For instance the UK Government plan for managing exotic animal disease33 describes, with great procedural exactness, the strategic, tactical and operational roles of organisations and individuals during outbreak scenarios. But it contains inherent conflicts within it regarding what the containment process is trying to achieve. It suggests in one respect that, 揫t]he Government抯 first objective in tackling outbreaks 匸 ]� is to restore the UK抯 disease free status as quickly as possible�. Yet it also states that it intends to 揫c]ause the least possible disruption to the food, farming and tourism industries, to visitors to the countryside, and to rural communities in the wider economy�. These wider aims are, of course, in direct conflict to achieving the first objective, but this conflict is neither resolved, nor even substantially addressed, in the document. The implication is that these issues need to be � indeed, can only be - resolved in the specific context of a disease outbreak. The dimensions of this issue are different in the context of Cryptosporidium; in this case, alleviation of significant outbreak incidents is centred on the use of 慴oil water� notices. Here the priorities are to an extent clearer � the delivery of public health outcomes is overriding and paramount. However, sustained 慴oil water� notices are costly for industry and commerce and potentially damaging to consumer confidence in water supplies. A further complication is that the public health outcomes of alleviation are by no means clear. Not only does this containment strategy generate anxiety among publics, but it also has a further unintended health outcome, in that it increases the number of reported scalding incidents34. Thus there are potentially competing public health priorities. Alongside these uncertainties of purpose, it is the tactical and operational dimensions of science that are also significant to propagation of uncertainty within alleviation practice. In the context of AI and FMD, the use of modelling is again particularly important, with the predictive weakness of models tending to be exposed during crises. The use of 憆eal-time� modelling to inform and guide FMD disease control in the 2001 UK disease outbreak was a watershed in this respect35. Using either deterministic or stochastic techniques the models sought to build computer micro-simulations of the disease that could explain how it might transmit and progress through farms in space and time28,36,. It is in the relationship between the tactical and operational level of these modelling practices that uncertainties are exposed. For instance, in the course of our research, it has been argued by some scientists involved in the 2001 crisis that basic information on the transmission characteristics of the disease was limited. In this instance, expert opinion was used to inform the initial parameterisation of models: 揫the]... data or knowledge out there was qualitative rather than quantitative and so what we tended to find was that a relatively small group of scientists worldwide had been working on FMD. They were the experts called upon historically to advise and control of the epidemic and they sort of had a kind of gut feeling of this; how it behaved and a lot of it wasn抰 really quantified in any, sort of, rigorous way.� The wider literature on this crisis has noted that at the operational level detailed and accurate data on the spatial distribution of farms and livestock were not available to modellers. Moreover all of the models avoided the use of important, if indeterminate, environmental variables relating to transmission by air, such as weather and topography. Models were highly insensitive to great variability in the susceptibility of farms to infection, not least in the context of the infectiousness of different livestock. Little credence was given to the behaviour of farmers in adopting biosecurity measures. Together with the imposition of the 3km/24-48 hr culling policy, these operational deficiencies in modelling � much more than the perceived problem of being unable to quantify qualitatively known processes, indeed almost the opposite of this, a masking of ignorance by excessive quantification - led to a process described as 憄ostcode slaughter� or 慶arnage by computer�. 37 As a result, the need has been emphasised to build governance structures that can enhance the efficacy and empirical realism of these scientific modelling practices for future outbreaks, and for more locally-adapted determinations of slaughter tactics otherwise defined nationally and in the abstract. Sociological evidence from the 2001 FMD crisis has provided analytical and qualitative insights into repercussions of the operational dimensions of the outbreak38,39, and in particular how strategic approaches to alleviation, wedded to epidemiological models, 搇acked common sense and alienated and marginalized local knowledge�40 . Local knowledge in this sense means bodies of expertise tied to the experience of disease in particular places and locales. It encompasses professional specialists occupying roles in the public, private and third sectors (such as veterinarians, mental health workers, teachers) but also non professionalised (lay) forms of expertise (such as the practical 慿now-how� farmers and land managers). The proposition is that harnessing local understandings of the operational practice of animal disease alleviation may exposure higher level weakness in containment practices, such as those embedded in necessarily more synthetic scientific models often reflect. Such knowledge is inevitably bounded by the particular circumstances of its production. It does not travel with great efficiency and often arrives in messy and unstructured forms. Yet it is precisely because local knowledge is so 憇ituated� that it is authoritative at the point of outbreak. Strategic responsiveness to salient local knowledge is therefore important, though the emergent nature of this knowledge may mean it arrives too late to ameliorates weaknesses in tactics and strategy. There may be also fundamental mismatches between local and global understandings of an appropriate intervention, as Woolhouse (this edition) notes with regard to optimal culling rates in the 2001 FMD outbreak. A more practically effective overall containment system has to find ways of combining these different kinds and sources of knowledge and authority about animal disease. The testing of contingency arrangements in anticipatory arena is one context for this. In the UK for instance, simulated live exercises that rehearse the strategic, tactical and operational dimensions of alleviating outbreaks of exotic disease across of distributed set of stakeholders, is now being periodically conducted41. However a more general precondition for this constructive reconciliation of divergent expertise is prior recognition of these multivalent conditions of uncertainty in prevailing policy-authoritative scientific knowledge. 8. CONCLUSIONS History offers plenty of high profile lessons where, during moments of crisis, the procedural rationality of decision making has been exposed as inadequate, and sometimes chronically unable to manage and mitigate disease occurrence in socially acceptable ways. The language of public 慺ear�, 慸read� and 憄anic� which increasingly accompanies emergency situations in a range of fields, including animal diseases, signals a deeper sense of anxiety surrounding political and institutional capacities to cope, and thus by implication also, surrounding scientific advisory capacity to provide sound, practically-attuned knowledge. Even where public anxieties are unfounded, there is a sense, during outbreak situations, that the governance of disease containment stands perpetually on the brink of running, quite literally, 憃ut of control� � and not only biologically. As Pretty42 asks in the context of animal disease, 搘ithin scientific disciplines, uncertainty is an accepted norm ...[ ]... Yet how does this dynamic translate as the evidence rock is pushed towards the Sisyphean policy summit, or across to the public and media? Do policy makers and the public want evidence couched with uncertainties and probabilities? Or do they want simple answers?� This paper has sought to develop a framework for thinking constructively and critically about the way these uncertainties can be handled for animal disease containment. One plausible response to uncertainty is to redouble commitments to resolving inadequacies in relevant knowledge. This may mean enhancing precautionary measures within containment, for instance, investing in technical monitoring instruments of new filtration plants for public water supplies to anticipate better the occurrence of zoonotic waterborne pathogens such as Cryptosporidium, or to pre-empt ignorance and lack of downstream control by imposing more restrictive measures on animal movements and traceability to reduce the probability of the spread of FMD. Alternatively, it may mean experimenting in potentially paradigm-shifting innovations, such as through the introduction of novel technologies like faster and more precise diagnostics, new vaccines, or improved epidemiological modelling. Important though these efforts are, a key facet must also be 憀earning to live with� systems that remain open (in relation to inadequate knowledge of them, or intrinsically) and contingent in character, that is, systems with great capacity for unanticipated consequences and surprises. In the development of animal disease containment strategies there is a need to recognise the essential creativity of complex hybrid behavioural systems in evading prediction and control. Two implications of this are: a need for appropriately distributed, as distinct from concentrated knowledge, agency and responsibility; and a readiness to acknowledge the essential contingency of any expert knowledge, so that it can be open to supplementary knowledges from salient other quarters. Neither of these is easily accommodated in typical institutional settings of science and policy, in any domain43. Acknowledging that there are by-definition incalculable ignorances and indeterminacies that affect applications of scientific knowledge in disease containment, and building this into policy process design, does not mean abandoning policy to ignorance. It does however mean opening all such bodies of expert knowledge to question as to often hidden and taken-for-granted framing premises, which other bodies of knowledge, including non-scientific specialist (such as livestock experts � known as farmers), or social scientific research knowledge of relevant practices, may then be able to improve, or even correct. Enabling policy actors to be alert to, and reflexive about, these inevitable shortcomings demands cross disciplinary work at the interfaces of different disciplinary and policy discourse-practice, and across different arenas of containment. The framework developed here is designed to enable this process: the basis for more formalised and robust analysis of where uncertainty may exist and hence assist in highlighting areas where greater, cross-disciplinary effort might actually lead to a better containment policy. To what extent current framings of natural and social scientific knowledge in disease containment policy can accommodate this is debatable. The use of different types of natural and social science within strategies of containment is highly asymmetric, with disease modelling and economics arguably providing dominant policy framings of each, respectively. Moreover the relationship between natural and social science is also asymmetric, such that the former do not simply inform policy, but far more significantly, in effect end up by default defining the policy issues. For example scientific models, taken to be representations of only natural systems, reflect tacit commitments to what factors are taken as beyond policy influence, and what are feasible (or desirable) points of policy intervention44 . The associated tendency for policy to elaborate technical instruments instead of considering appropriate institutional changes which could help cultivate a policy culture more open to contingencies and lack-of-(predictive)-control, has been discussed for risk management contexts, by Wynne.1 In the UK, dimensions of how government may enable this culture through broader and deeper platform of social research are now emerging45. Recognising and working effectively with these different qualities of calculable and incalculable uncertainties in animal disease containment thus depends on re-thinking some central assumptions about the role of natural and social sciences in real world policy design.. This is not only a question of cross-disciplinary relations, but crucially, of the readiness of policy cultures to develop and enact new interdisciplinary understandings of the roles of knowledge, uncertainty, and inherent limits of intellectual control, in realistic and credible policy practice. ACKNOWLEDGEMENTS The insights informing this paper arise from funding under the UK research councils� Rural Economy and Land Use (RELU) programme (Project Code: RES-229-25-0015). RELU is funded jointly by the Economic and Social Research Council, the Biotechnology and Biological Sciences Research Council and the Natural Environment Research Council, with additional funding from the Department for Environment, Food and Rural Affairs and the Scottish燝overnment. This project received additional support from Defra. The programme抯 support is gratefully acknowledged. REFERENCES Wynne, B. 1992 Uncertainty and environmental learning: reconceiving science and policy in the preventive paradigm. Global Environmental Change 2, 111-27. (DOI 10.1016/0959-3780(92)90017-2) Harris, G. 2008 Seeking Sustainability in an Age of Complexity. Cambridge: University Press. Zadeh, L. 2005 Towards a generalised theory of uncertainty � an outline. Information Sciences 172, 1-40. (DOI 10.1016/j.ins.2005.01.017) Walker, W.E., Harremoes, P., Rotmans, J., van der Sluijs, J. P., van Asselt, M. B. A., Janssen, P. & Krayer von Krauss, M. P. 2003 Defining Uncertainty: A conceptual Basis for Uncertainty Management in Model-Based Decision Support. Integrated Assessment 4, 5-17. (DOI 10.1076/iaij.4.1.5.16466) Ascough II, J. C., Maier, H. R., Ravalico, J. K. and Strudley, M. W. 2008 Future research challenges for incorporation of uncertainty in environmental and ecological decision-making. Ecological Modelling 219, 383-399. (DOI 10.1016/j.ecolmodel.2008.07.015)� Tannert, C. Elvers, H.D. Jandrig, B. 2007 The ethics of uncertainty. EMBO reports 8, 892-896. (DOI 10.1038/sj.embor.7401072) Krause, G. 2008 How can infectious diseases be prioritized in public health? A standardized prioritization scheme for discussion. EMBO reports 9, S22朣27. (DOI 10.1038/embor.2008.76) Defra (2010) Veterinary surveillance: Prioritisation Project. Defra: London. Accessible at: http://www.defra.gov.uk/foodfarm/farmanimal/diseases/vetsurveillance/strategy/programme/prioritisation.htm [last accessed 17th November 2010] Krause G. 2008 Prioritisation of Infectious Diseases in Public Health. Eurosurveillance 13, 1-6. FAO 2008 Biosecurity for highly pathogenic avian influenza: Issues and Options. Rome: FAO. Defra 2008 Biosecurity guidance to prevent the spread of animal diseases. London: Defra. Defra 2008 Give disease the boot. London: Defra. Accessible at: http://webarchive.nationalarchives.gov.uk/20080609145742/http://defra.gov.uk/animalh/diseases/default.htm [last accessed 17th November 2010] Donaldson, A. 2008 Biosecurity after event: Risk politics and animal disease. Environment and Planning A 40, 1552-1567. (DOI 10.1068/a4056) Chalmers, R. M., Giles, M. 2010 Zoonotic cryptosporidiosis in the UK - challenges for control. Journal of Applied Microbiology 109, 1487-1497. (DOI: 10.1111/j.1365-2672.2010.04764.x) Fish, R. D., Winter, M., Oliver, D. M., Chadwick, D. R., Selfa, T. L., Heathwaite, A. L., Hodgson, C. J. 2009 Unruly pathogens: eliciting values for environmental risk in the context of heterogeneous expert knowledge. Environmental Science and Policy 12, (DOI: 281-296. 10.1016/j.envsci.2009.02.002) Stapleton, C. M., Kay, D., Wyer, M. D., Davies, C., Watkins, J., Kay, C., McDonald, A. T., Porter, J. , Gawler, A. 2009 Evaluating the operational utility of Bacteroidales quantitative PCR-based MST approach in determining the source of faecal indicator organisms at a UK bathing water. Water Research 43, 4888-4899. (DOI 10.1016/j.watres.2009.09.015) Waterton, C., Norton, L., Morris, J. 2006 Understanding Loweswater: interdisciplinary research in practice. Journal of Agricultural Economics 57, 277-293. (DOI  HYPERLINK "http://dx.doi.org/10.1111/j.1477-9552.2006.00052.x" 10.1111/j.1477-9552.2006.00052.x) Butler, D. 2006 Disease surveillance needs a revolution. Nature 440, 6-7 (DOI: 10.1038/440006a) Lowe, P. 2009 Unlocking Potential: A report on veterinary expertise in food animal production. London: Defra. Nichols, G., Chalmers, R., Lake,I., Sopwith,W., Regan, M., Hunter, P., Grenfell,P., Harrison, F., Lane. C. 2006 Cryptosporidiosis: a report on the surveillance and epidemiology of Cryptosporidium infection in England and Wales. Drinking Water Directorate: London Chalmers,R., Robinson, G., Elwin, K., Hadfield,S., Xiao,L., Ryan, U., Modha, D., Mallaghan,C. 2009 Cryptosporidium Rabbit Genotype, a Newly Identified Human Pathogen Emerg Infect Dis. 15, 829�830. (DOI  HYPERLINK "http://dx.crossref.org/10.3201%2Feid1505.081419" \t "pmc_ext" 10.3201/eid1505.081419) Woods, A. 2004 A Manufactured Plague: The History of Foot-and-Mouth Disease in Britain. London: Earthscan. Doering, M, Nerlich, B. 2009 From Mayhem to Meaning: an introduction to the Cultural Meaning of the 2001 Outbreak of Foot and Mouth Disease in the UK. In The social and cultural impact of Foot and Mouth Disease in the UK in 2001, (eds M Doering, B. Nerlich), pp3-18. Manchester: University Press. Wilkes, G., Edge, T., Gannon, V., Jokinen, C., Lyautey, E., Medeiros, D., Neumann, N., Ruecker, N., Topp, E., Lapen, D. 2009 Seasonal relationships among indicator bacteria, pathogenic bacteria, Cryptosporidium oocysts, Giardia cysts and hydrological indices for surface waters within an agricultural landscape. Wat. Res. 43, 2209-2223. (DOI  HYPERLINK "http://dx.doi.org/10.1016/j.watres.2009.01.033" \t "doilink" 10.1016/j.watres.2009.01.033)� Dent, J.E., Kao, R.R., Kiss, I.Z, Hyder, K., Arnold, M. 2008 Contact structures in the poultry industry in Great Britain: Exploring transmission routes for a potential avian influenza virus epidemic. BMC Veterinary Research 4, 27. (DOI:10.1186/1746-6148-4-27) HYPERLINK "http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sharkey%20KJ%22%5BAuthor%5D"Sharkey, K.J., HYPERLINK "http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bowers%20RG%22%5BAuthor%5D"Bowers R.G., HYPERLINK "http://www.ncbi.nlm.nih.gov/pubmed?term=%22Morgan%20KL%22%5BAuthor%5D"Morgan K.L., HYPERLINK "http://www.ncbi.nlm.nih.gov/pubmed?term=%22Robinson%20SE%22%5BAuthor%5D"Robinson S.E., & HYPERLINK "http://www.ncbi.nlm.nih.gov/pubmed?term=%22Christley%20RM%22%5BAuthor%5D"Christley R,M. 2007 Epidemiological consequences of an incursion of highly pathogenic H5N1 avian influenza into the British poultry flock. Proc. R. Soc. B. 275, 19-28. (DOI: 10.1098/rspb.2007.1100) Truscott J., Garske T., Chris-Ster I., Guitian J., Pfeiffer D., Snow L., Wilesmith J., Ferguson N.M., Ghani A.C. 2007 Control of highly pathogenic H5N1 avian influenza outbreak in the GB poultry flock. Proc. R. Soc. B. 274, 2287-2295. (DOI 10.1098/rspb.2007.0542) Kao, R. 2002 The role of mathematical modelling in the control of the 2001 FMD epidemic in the UK. Trends Microbiol 10, 279-286. (DOI  HYPERLINK "http://dx.doi.org/10.1016/S0966-842X(02)02371-5" \t "doilink" 10.1016/S0966-842X(02)02371-5)� Keeling, M.J. (2005) Models of foot-and-mouth disease. Proc Roy Soc B. 272, 1195-(DOI 1202.  HYPERLINK "http://dx.crossref.org/10.1098%2Frspb.2004.3046" \t "pmc_ext" 10.1098/rspb.2004.3046) Kitching, R.P., Thrusfield, M.V., Taylor, N.M. 2006 Use and abuse of mathematical models: an illustration from the 2001 foot and mouth disease epidemic in the United Kingdom. Rev Sci tech. 25, 294-211. (PMID 16796055) Guitain, J., Pfeiffer, D. 2006 Should we use models to inform policy development? The Veterinary Journal 172, 393-395. Wynne, B. & Shackley, S. 1994 Environmental Models: Truth Machines or Social Heuristics? The Globe, 21, September 6-8. Defra 2009 Contingency Plan for Exotic Diseases of Animals: Framework Response Plan London: Defra. O'Donnell, M., Platt, C., Aston, R. 2000 Effect of a boil water notice on behaviour in the management of a water contamination incident Commun Dis Public Health; 3, 56-9 Bickerstaff K., Simmons P. 2004 The right tool for the job? Modelling, spatial relationships, and styles of scientific practice in the UK foot and mouth crisis Environment and Planning D: Society and Space 22, 393-412.  HYPERLINK "http://dx.doi.org/10.1068/d344t" (DOI 10.1068/d344t) Green, L.E., Medley, G.F. 2002 Mathematical modelling of the foot and mouth disease epidemic of 2001: strengths and weaknesses. Research in Veterinary Science 73, 201-205. (PMID: 12443675) Campbell, D., Lee, R. 2003 Carnage by Computer: The Blackboard Economics of the 2001 Foot and Mouth Epidemic. Social & Legal Studies 12, 425-459. (DOI 10.1177/0964663903012004002) Convery, I., Bailey, C., Mort, M., Baxter, J. 2005 Death in the wrong place? Emotional geographies of the UK 2001 foot and mouth disease epidemic Journal of Rural Studies 21, 99-109. (DOI 10.1016/j.jrurstud.2004.10.003) Bailey, C., Convery, I., Mort, M. Baxter, J. 2006 Different public health geographies of the 2001 foot and mouth disease epidemic: 'citizen' versus 'professional' epidemiology. Health and Place 12, 157-166. (DOI HYPERLINK "http://dx.doi.org/10.1016/j.healthplace.2004.11.004" \t "doilink"  10.1016/j.healthplace.2004.11.004) 40. Convery, I. Mort, M., Bailey, C., Baxter, J. 2008 Animal Disease and Human Trauma Basingstoke: Palgrave Macmillan. 41 Defra 2010 Disease control: contingency planning exercises: Accessible at: http://www.defra.gov.uk/foodfarm/farmanimal/diseases/control/exercises.htm. Last Accessed 17th November 2010. 42 Pretty, J. 2009 Speaking truth to power: FMD and the future of agriculture and its communities. In The social and cultural impact of Foot and Mouth Disease in the UK in 2001, (eds M Doering, B. Nerlich), pp245-258. Manchester: University Press. 43 Felt, U. Wynne, B. Callon, M Eduarda Gon鏰lves, M Jasanoff, S., Jepsen, M., Joly, P.B., Konopasek, Z., May,S., Neubauer, C., Rip, A., Siune, K., Stirling,A., Tallacchini, M. 2007 Science and Governance: Taking European Knowledge Society Seriously. Luxembourg: Office for Official Publications of the European Communities. 44 Taylor, P. 1995 ����� $ & * R T z | � � � � � � � � # $ 1 2 3 a b 缧护粬粬娀柣柣柣柣柣柣柣柣gZhD[�h}D�CJOJQJhD[�h}D�OJQJ/hD[�h}D�5丆JOJPJQJ^JaJnHtHhD[�h}D�H*OJQJhD[�h}D�H*OJQJaJ,hD[�h}D�B*CJH*OJQJ^JaJph)hD[�h}D�B*CJOJQJ^JaJph,hD[�h}D�5丅*CJOJQJ^JaJph/hD[�h}D�5丅*CJ OJQJ\乛JaJ ph���3 4 b c � � 6 7 � �   ���������������$ $d��a$gd黇�$ $d��a$gd&vB$ $d��a$gd&vB$ $�7$8$H$a$gdqp%$ $d�ゐ7$8$H$a$gd&vB$ $劆刞�d�ゐ7$8$H$^劆`刞鷄$gd&vB$ $剉�d��]剉�a$gd&vBb c 9 :    ^ ` } � � E F $&���^p���(箐箱箱箱箱镐ㄤ塼歡╓湎湎hD[�h}D�5丆JOJQJaJhD[�h}D�CJOJQJ(hD[�h}D�CJOJQJ^JaJnH tH  hD[�h}D�CJOJQJ^JaJhD[�h}D�6丱JQJaJhD[�h}D�6丆JOJQJaJ,hD[�h}D�CJOJPJQJ^JaJnHtH)hD[�h}D�B*CJOJQJ^JaJphhD[�h}D�CJOJQJaJhD[�h}D�OJQJaJ ~  � � � � F G �����^p ����������������勯�d��`勯�gd�1^d��7$8$H$gd�1^$ $�7$8$H$a$gdqp% $�7$8$H$gd&vB $ $a$gdl5� $d��gd&vB$ $d��a$gd黇�$ $d��a$gd&vB(7des���������� \lchi*+S^��樵吭吭吭吭吭吭啊詰唞o哾哾哬哾�hD[�h淭OJQJhD[�h7{�OJQJhD[�hfA�OJQJhD[�h}D�H*OJQJhD[�h}D�OJQJhD[�h}D�5丆JOJQJaJhD[�h}D�CJOJQJaJhD[�h7{�CJOJQJaJ)hD[�h7{�B*CJOJQJ^JaJph)hD[�h}D�B*CJOJQJ^JaJph,hD[�h}D�6丅*CJOJQJ^JaJph \l�R;"�$�$('�(����������~ & F勈剾�d�7$8$H$\$^勈`剾龷d�1^d��7$8$H$gd�1^ d�ゐ�gd�1^ �d��`�gd�1^ �d�`�gd�1^ 劒d�`劒gd�1^d�gd�1^d�ゐ�7$8$H$gd�1^ d��gd�1^ ����p|������������ - � � ?!c!" "#"##-#�$�$�%�%V&a&蹶哧哧哧哧哧呶哧哧呗呗哧哧叱こ硡t硉c hD[�h7{�CJOJQJ^JaJ hD[�h}D�CJOJQJ^JaJhD[�h}D�5丆JOJQJaJhD[�h淭CJOJQJaJhD[�h7{�CJOJQJaJhD[�h}D�CJOJQJaJhD[�h}D�6丱JQJ!hD[�h}D�B*OJQJ^JphhD[�h}D�OJQJhD[�h7{�OJQJhD[�h�9OJQJ&a&�&�&''('2'3'7'�'�(�(�(�(�(�(�(�(�(�(�(镛镂锖飯锖tb颯BSB� hD[�h&SwCJOJQJ^JaJhD[�h&SwCJOJQJaJ#hD[�h}D�>*CJOJQJ^JaJ&hD[�h}D�6�>*CJOJQJ^JaJhD[�h}D�CJOJQJaJ hD[�h}D�CJOJQJ^JaJ#hD[�h}D�>*CJOJQJ^JaJ&hD[�h}D�6�>*CJOJQJ^JaJhD[�h}D�5丆JOJQJaJ hD[�h廧�CJOJQJ^JaJ hD[�h}D�CJOJQJ^JaJ�(�(�)****{*|*++I,O,t,,€,�,�,�,�-�-B.镛凸尥尥迌辴`薰N�=� hD[�h=�CJOJQJ^JaJ#hD[�h}D�6丆JOJQJ^JaJ&hD[�h2C�h2C�CJOJQJ^JaJhD[�h2C�CJOJQJaJhD[�h}D�5丆JOJQJaJ#hD[�h}D�>*CJOJQJ^JaJ&hD[�h}D�6�>*CJOJQJ^JaJ&hD[�h}D�6�>*CJOJQJ^JaJ hD[�h&SwCJOJQJ^JaJ hD[�h}D�CJOJQJ^JaJ hD[�h7{�CJOJQJ^JaJ�(*�+�,O/2N4�6:B;�����iSS��d��<�7$8$H$^�`�gd�1^�d��<�7$8$H$^�gd�1^m$ & F勈剾�d��<�7$8$H$^勈`剾龷d�1^m$ & F勈剾�d�ゐ�<�7$8$H$^勈`剾龷d�1^m$ & F勈剾�d��7$8$H$^勈`剾龷d�1^m$d�7$8$H$gd�1^ & F勈剾�d�7$8$H$^勈`剾龷d�1^m$ B.�.O/b/c/�1�12(2q2�2N4O466�6�6�7�7�7�78@8碥榷堙軗軅躪躖躖躖躖蹻$hD[�h}D�CJOJPJQJ^JaJ#hD[�h}D�6丆JOJQJ^JaJ,jhD[�h}D�OJQJUmHnHtH u hD[�h}D�CJOJQJ^JaJ&hD[�h}D�6�>*CJOJQJ^JaJhD[�h}D�CJOJQJaJ#hD[�h}D�6丆JOJQJ^JaJ&hD[�h}D�6�>*CJOJQJ^JaJ hD[�h}D�CJOJQJ^JaJ$hD[�h}D�CJOJPJQJ^JaJ@8A8B8C8n8v8�8�8�8�8�9�9::-;8;B;u;�;�;�;�;�<��<��=�=�>碣频55555挼俿csTsDsDshD[�h}D�6丆JOJQJaJhD[�h淭CJOJQJaJhD[�h}D�CJH*OJQJaJhD[�h}D�CJOJQJaJhD[�h}D�5丆JOJQJaJ hD[�h淭CJOJQJ^JaJ#hD[�h}D�6丆JOJQJ^JaJ hD[�h}D�CJOJQJ^JaJ$hD[�h}D�CJOJPJQJ^JaJ'hD[�h}D�6丆JOJPJQJ^JaJ$hD[�h淭CJOJPJQJ^JaJB;u;�>桝禗xH濷sSWI]i]遖頲0g蔶飉Dqt6t鱰�������������������d�gd�1^d�ゐ�7$8$H$gd�1^�d��7$8$H$`�gd�1^ �d��`�gd�1^ d��gd�1^ d�ゐ�gd�1^�>�>�?�?{@婡旳桝SCTC丆侰匔圕wD|D禗稤燜窮MHvH{I㊣繧睰奓頛M5MBM疋逾免扳疋♀♀♀娾s鈙鈈PbPb鈈Pb#hD[�h}D�6丆JOJQJ^JaJ hD[�h}D�CJOJQJ^JaJ,hD[�h}D�B*CJOJQJ\乛JaJph,jhD[�h}D�OJQJUmHnHtH uhD[�hiV�CJOJQJaJ$hD[�h}D�CJOJPJQJ^JaJhD[�h}D�6丆JOJQJaJhD[�h=�CJOJQJaJhD[�h}D�CJOJQJaJhD[�h淭CJOJQJaJBMCM躆軲螻烵鱋鵒鶲鸒dPpPqP匬躊鉖鶳鸓YQbQnQqQtQuQvQwQzQ}Q廞換1R2R8RMRWR_RfR€R鑄門UU\U栀辱偃抚荣槈樫樫z贅贅贅賶贅贅贅贅墭k樫纲樫hD[�hfA�CJOJQJaJhD[�h2C�CJOJQJaJhD[�h�,�CJOJQJaJhD[�hiV�CJOJQJaJ hD[�hiV�CJOJQJ^JaJhD[�h}D�CJH*OJQJaJ hD[�h}D�CJOJQJ^JaJhD[�h}D�CJOJQJaJ-hD[�h}D�B*CJOJQJaJnH phtH *\UhU綰tVWW峏嶺鬤YiYmYT[n[[賉鏪鸞黐B\S\T\F]I]i]躛鑎萠蚥疋镶库库扳疋煆怦怦鈴饪o鉄X�,hD[�h}D�CJOJPJQJ^J aJmH sH hD[�h}D�5丆JOJQJaJhD[�h|o�6丆JOJQJaJhD[�h}D�6丆JOJQJaJ hD[�h}D�CJOJQJ^JaJhD[�hfA�CJOJQJaJhD[�h}D�CJH*OJQJaJ%hD[�h}D�B*CJOJQJaJphhD[�h}D�CJOJQJaJhD[�hiV�CJOJQJaJ蚥裝c嘽與詂:dFdod詃錮鏳鹍齞nfpfqf鮢.g県穐縣遠iiii#i(iFiGiki卛塱緅苆疋逾疋经锯濃濃潔鈠鈑鈑鉂庥怦鈑疋k鈁hD[�h}D�6丆JOJQJaJhD[�h�,�CJOJQJaJ%hD[�h}D�B*CJOJQJaJphhD[�hfA�CJH*OJQJaJhD[�h}D�CJH*OJQJaJ hD[�h}D�CJOJQJ^J aJ)hD[�h}D�B*CJOJQJ^JaJphhD[�h1�CJOJQJaJhD[�h}D�CJOJQJaJhD[�hGf�CJOJQJaJ#苆莏蒵fkvkUlWl俵搇﹍玪痩閘駆Wm飉鱩蒼oo莖蒾趏ppBpRpnp|p襻襻褚襻衤癖槺駢駌YrYr駌襻馢hD[�h�,�CJOJQJaJ0hD[�h}D�CJH*OJQJaJfHq� ����-hD[�h}D�CJOJQJaJfHq� ����hD[�hGf�CJOJQJaJ1hD[�h}D�CJOJQJ^JaJfHq� ���� hD[�h}D�CJOJQJ^JaJhD[�h}D�CJH*OJQJaJhD[�hfA�CJOJQJaJhD[�h}D�6丆JOJQJaJhD[�h}D�CJOJQJaJ|p巔 sst5t6t玹2u|v~vawcw獁,x4xpx魓 y y@ySyzzZz{z{镟朽类敞硽硽硩硛硂^o囡郞o鄌hD[�hl�CJOJQJaJ hD[�h��CJOJQJ^JaJ hD[�h}D�CJOJQJ^JaJhD[�hl�OJQJ^JhD[�h�,�OJQJ^JhD[�h}D�H*OJQJ^JhD[�h}D�OJQJhD[�h}D�OJQJ^JhD[�h}D�5丆JOJQJaJhD[�h}D�CJH*OJQJaJhD[�h}D�CJOJQJaJhD[�h}D�6丆JOJQJaJ鱰pxB|9�晥0�z�墦e�啛粻辏 �x�搏袭/�������������������d��7$8$H$gd�1^ d��gd�1^ d�\$gd�1^�d�^�gd�1^ �d��`�gd�1^�d��7$8$H$`�gd�1^ �d�`�gd�1^{!{P{l{亄"|1|<|>|?|s~倊儈剘妦媬+€\€k€l€檧珋2�碥塑隧芄塥順韲塥|m]Q|E|hD[�h}D�6丱JQJhD[�h}D�5丱JQJhD[�h}D�0J5�6丱JQJhD[�h}D�B*OJQJphhD[�h}D�OJQJ hD[�hl�CJOJQJ^JaJ#hD[�hl�6丆JOJQJ^JaJhD[�h}D�CJOJQJaJ#hD[�h}D�CJH*OJQJ^JaJ hD[�h}D�CJOJQJ^JaJ hD[�h}D�CJOJQJ^JaJ#hD[�h}D�6丆JOJQJ^JaJ2�4�5�儊泚膩 �0�e���9�<�`�鶈䥺�����巿悎 � �0�l�o�螉矜滋捞捞庄谞彔弨爛爌爌燼爮P� hD[�hl�CJOJQJ^JaJhD[�h�CJOJQJaJhD[�h}D�CJH*OJQJaJhD[�hl�CJOJQJaJ hD[�h}D�CJOJQJ^JaJhD[�h}D�CJOJQJaJ hD[�h}D�6丅*OJQJphhD[�h}D�OJQJ\�hD[�h}D�OJQJhD[�h}D�B*OJQJphhD[�hfA�OJQJhD[�h}D�H*OJQJ^J螉願�p�w���>�K�[�晲煇笎菒鷲�!�皰矑蓲螔䲣����垞B�K�跀镛辖檄限澫幭幭幭藿尴~蟧蟧限镛Z)hD[�h}D�B*CJOJQJ^J aJph333hD[�h�CJOJQJaJhD[�h}D�CJOJQJ]乤JhD[�hl�CJOJQJaJhD[�h}D�6丆JOJQJaJhD[�h}D�CJH*OJQJaJ"hD[�h}D�6丆JOJQJ]乤JhD[�h}D�CJOJQJaJ hD[�h}D�CJOJQJ^JaJ hD[�h�CJOJQJ^JaJ跀銛��煐U�V����a�e�厵R�k�洑髿樨樨曝漂権曝佖r]J7]$hD[�h}D�CJOJQJaJnH tH $hD[�h�CJOJQJaJnH tH )hD[�h}D�B*CJOJQJ^J aJphhD[�h}D�CJOJQJaJ,hD[�h}D�CJOJPJQJ^J aJmH sH ,hD[�h1�CJOJPJQJ^JaJmH sH ,hD[�h}D�CJOJPJQJ^JaJmH sH #hD[�h}D�CJH*OJQJ^JaJ hD[�h}D�CJOJQJ^JaJ,hD[�h}D�B*CJH*OJQJ^J aJph333髿魵鯕䴕��蜎鯖�)�<�G�I�P�Q�R�S�W�X�贉鳒��*�s�t�姙詾貫釣鉃啛摙暾暾暾暾暾昀绽贞癁瘡€弨弨徴sh]h]h�hD[�h�OJQJhD[�h}D�OJQJhD[�h}D�OJQJ^JhD[�hl�CJOJQJaJhD[�h}D�CJOJQJaJ hD[�h�CJOJQJ^JaJ hD[�h}D�CJOJQJ^JaJ)hD[�h�B*CJOJQJ^J aJph)hD[�h}D�B*CJOJQJ^J aJph)hD[�hl�B*CJOJQJ^J aJph"摙暍辏 �婴预i�p�歆��知矮鲍铽���<�>�U�V�`�a�莠璎蟋衄��p�壄彮摥协莪�#�嫯嵁'�o�卑镟朽拎拎盀嵿~鄋嗔嗔嗔嗔嗔嗔嗔嗔嗔嗔嗔囡鄭囡hD[�h}D�6丆JOJQJaJhD[�h&SwCJOJQJaJ hD[�h}D�CJOJQJ^JaJ#hD[�h}D�CJH*OJQJ^JaJ hD[�h}D�CJOJQJ^JaJhD[�h�CJOJQJaJhD[�h}D�5丆JOJQJaJhD[�h}D�CJOJQJaJhD[�h}D�CJH*OJQJaJ+卑舶伇嚤/�脸鲁槌沓b�w�掖��幍柕Ц毓俟诠z��"�$�-�郴�襦梧窨癜癜襦熰庎梧襦駘駘駇Z$hD[�h}D�CJOJPJQJ^J aJ hD[�h}D�CJOJQJ^JaJhD[�h}D�CJH*OJQJaJ hD[�h#X!CJOJQJ^JaJ hD[�h�CJOJQJ^JaJhD[�h�CJOJQJaJhD[�h�CJOJQJaJ#hD[�h}D�CJH*OJQJ^JaJ hD[�h}D�CJOJQJ^JaJhD[�h}D�CJOJQJaJ/�掖诠M�]�钠跞�斚��庳�0�Y�e��������������� d��gd�1^ �d��`�gd�1^d��7$8$H$gd�1^d�ゐ�7$8$H$gd�1^�d��7$8$H$`�gd�1^�d��7$8$H$`�gd�1^�d��7$8$H$^�gd�1^��伡毤醇导芳浇探蔷峋z�┛婵�{�}�~�世掷碲勤蹿Z拑tctRARt挘 hD[�h.;@堽�CJOJQJaJ hD[�h鮙�@堽�CJOJQJaJ hD[�h.;CJOJQJ^JaJhD[�h.;CJOJQJaJhD[�h}D�CJOJQJaJ hD[�h}D�CJOJQJ^JaJ hD[�h鮙�CJOJQJ^JaJ$hD[�h�CJOJPJQJ^J aJ$hD[�h�!@CJOJPJQJ^J aJ$hD[�h}D�CJOJPJQJ^J aJ$hD[�h.;CJOJPJQJ^J aJ掷芾炖�'�(�-�8�Q�(�G�I�L�l�n�y�z�嚶孤新K�L�M�Z�]�推纹掀嵣柹干仙谏嫔�.�镛镛镛惋惋惋惋酵揎揎蕃逌妠k絳\{\{\{\hD[�h�vCJOJQJaJhD[�hqU�CJH*OJQJaJhD[�hqU�CJOJQJaJ#hD[�h}D�5丆JOJQJ^JaJhD[�h}D�5丆JOJQJaJ hD[�h�CJOJQJ^JaJhD[�h��CJH*OJQJaJ hD[�h鮙�CJOJQJ^JaJ hD[�h}D�CJOJQJ^JaJ hD[�h��CJOJQJ^JaJ$.�f�w�8�9�€�蛲嵪幭徬肯滔阏檎,�-�.�/�1�S�T�U�V�b�庁矩呜挢哓嘭嶝q�v�纲襻褚褚衤柴狁q狁虏駭瘢拢叄叄卽瞗瘢�hD[�hfA�CJOJQJaJhD[�h��CJH*OJQJaJhD[�h��CJOJQJaJhD[�h��CJOJQJaJhD[�h�CJOJQJaJhD[�h��CJH*OJQJaJhD[�hqU�CJH*OJQJaJhD[�h�vCJOJQJaJhD[�hqU�6丆JOJQJaJhD[�hqU�CJOJQJaJ#纲鹳褓糍髻��0�嬠犤︑观聚眼镘4�Y�e�f�剌筝糨踺!�2�箐帐珍韩殗毇殗毇簒玥玒H� hD[�h聓�CJOJQJ^JaJhD[�h�'CJOJQJaJhD[�h}D�6丆JOJQJaJhD[�h聓�CJOJQJaJ%hD[�h}D�B*CJOJQJaJph!hD[�h}D�B*CJOJQJphhD[�h}D�CJOJQJaJhD[�h}D�5丆JOJQJaJhD[�h�OJQJhD[�h�CJOJQJaJhD[�hqU�CJOJQJaJhD[�hqU�CJOJQJe�"���/�0�d�P�便 �g�5�铃x�ょ� ������������������% & F��d�^�`�gd�1^ & F��d�7$8$H$^�`�gd�1^m$ & F��d�[$\$^�`�gd�1^ & F��d�^�`�gd�1^m$2�`�}�~�绒苻蒉噢孓甾磙���0�嗊疬��碥思溂崀o~糬I^7^#hD[�h}D�6丆JOJQJ^JaJ(hD[�h}D�CJOJQJ^JaJnH tH  hD[�h}D�CJOJQJ^JaJhD[�h聓�CJOJQJaJhD[�hwz�CJOJQJaJhD[�h�'CJOJQJaJhD[�h}D�5丆JOJQJaJhD[�h}D�6丆JOJQJaJhD[�h}D�CJOJQJaJ hD[�h�'CJKH$OJQJaJ hD[�h}D�CJKH$OJQJaJ#hD[�h}D�6丆JKH$OJQJaJ�� ���.�/�驵� ��-�.�/�0�u�佱傖冡忈碥撕ズ杽杢柡c篶簴cQc?c#hD[�h`$;5丆JOJQJ^JaJ#hD[�h`$;6丆JOJQJ^JaJ hD[�h`$;CJOJQJ^JaJhD[�h}D�5丆JOJQJaJ"hD[�h}D�6丆JOJQJ]乤JhD[�h}D�CJOJQJaJ(hD[�hwz�CJOJPJQJaJnH tH  hD[�hwz�CJOJQJ^JaJ hD[�h�'CJOJQJ^JaJ hD[�h}D�CJOJQJ^JaJ#hD[�h}D�5丆JOJQJ^JaJ忈愥结.�;�<�=�>�?�G�M�d�q�⑩扁槲楷槆s嚳嘰蜬;,hD[�hfASCJOJQJaJhD[�h}D�6丆JOJQJaJ hD[�h}D�CJOJQJ^JaJ,hD[�h`$;0J<�CJOJQJ^JaJmH sH 'hD[�h`$;0J5丅*CJ\乤Jph�!hD[�h`$;0JB*CJaJph�'hD[�h`$;0J6丅*CJ]乤Jph�$hD[�h`$;0J5丅*CJaJph�hD[�h`$;CJOJQJaJ4hD[�h`$;CJOJPJQJ^JaJmH nH sH tH ,hD[�h`$;0J;CJOJQJ^JaJmH sH 扁测棱骡<�>�蔼�翱�镑�冲�椼сㄣ般恒镟押亨惫诲笔诲NhD[�h}D�6丆JOJQJaJhD[�h}D�CJOJQJaJhD[�h騣2CJOJQJaJ$hD[�h`$;0J=CJOJQJ^JaJ$hD[�hwz�0J=CJOJQJ^JaJ'hD[�h`$;0J5丆JOJQJ^JaJ'hD[�hwz�0J5丆JOJQJ^JaJ hD[�h�'CJOJQJ^JaJ#hD[�h}D�5丆JOJQJ^JaJ#hD[�h}D�6丆JOJQJ^JaJ hD[�h}D�CJOJQJ^JaJ@�C�N�O�P�V�v�w�x�辨焰R�r�s�u�w�}�嗙樵开暘晞ufuVuFu7uhD[�h`$;CJOJQJaJhD[�h}D�5丆JOJQJaJhD[�h}D�6丆JOJQJaJhD[�h騣2CJOJQJaJhD[�h}D�CJOJQJaJ hD[�h}D�CJOJQJ^JaJ(hD[�h`$;CJOJQJ^JaJmH sH (hD[�hwz�CJOJQJ^JaJmH sH (hD[�h�'CJOJQJ^JaJnH tH (hD[�h}D�CJOJQJ^JaJnH tH +hD[�h}D�5丆JOJQJ^JaJnH tH 嗙㈢gょ腌 �B�O�诣砧哞噼徼彖骅�碲撕┖椇吅卶]J10hD[�hwz�0J>*B*CJOJQJ^JaJph�$hD[�h`$;0JCJOJQJ^JaJ'hD[�h`$;0J5丆JOJQJ^JaJ'hD[�hwz�0J5丆JOJQJ^JaJ#hD[�h}D�5丆JOJQJ^JaJ#hD[�h}D�6丆JOJQJ^JaJ hD[�h騣2CJOJQJ^JaJ hD[�h}D�CJOJQJ^JaJhD[�h}D�CJOJQJaJ$hD[�h`$;0J=CJOJQJ^JaJ$hD[�hwz�0J=CJOJQJ^JaJ����p�戦掗旈為熼らラ彘骈��� �@�缰糯⒋惔乺_乢H_r�9hD[�h}D�CJOJQJaJ,hD[�hwz�0J>*B*CJOJQJaJph�%jhD[�hwz�CJOJQJUaJhD[�h`$;CJOJQJaJhD[�hwz�CJOJQJaJ#hD[�hwz�5丆JOJQJ^JaJ#hD[�hwz�6丆JOJQJ^JaJ hD[�hwz�CJOJQJ^JaJ hD[�h騣2CJOJQJ^JaJ hD[�h}D�CJOJQJ^JaJ0hD[�h`$;0J>*B*CJOJQJ^JaJph�@�A�B�H�I�L�R�S�V�W�X�g�h�ш顷贞仃訇I�Z�疋意骡场��鈖鈇釲6+hD[�h}D�6丆JOJQJ^JaJmH sH (hD[�h}D�CJOJQJ^JaJmH sH hD[�h橠zCJOJQJaJhD[�hfASCJOJQJaJ hD[�h`$;CJOJQJ^JaJ hD[�hwz�CJOJQJ^JaJ#hD[�h`$;CJOJQJ\乛JaJhD[�h`$;CJOJQJaJhD[�h}D�5丆JOJQJaJhD[�h}D�6丆JOJQJaJhD[�h}D�CJOJQJaJhD[�h�'CJOJQJaJ �i�訇犭�~�i�m��&����������|��") & F��d�-DM� ����[$\$^�`�gd�1^% & F��d�^�`�gd�1^ & F��d�^�`�gd�1^ & F��d�^�`�gd�1^m$ & F��d�7$8$H$^�`�gd�1^m$ Z�嶋滊诫唠嚯犭>�?�E�T�囲堨橃胝肜崩瀷瀝\I5'hD[�hwz�0J66丆JOJQJ^JaJ$hD[�hwz�0JCJOJQJ^JaJ+hD[�hwz�CJOJQJ\乛JaJnH tH 1hD[�hwz�6丆JOJQJ\乚乛JaJnH tH $hD[�h騣2CJOJQJaJnH tH $hD[�hwz�CJOJQJaJnH tH hD[�h橠zCJOJQJaJ(hD[�h}D�CJOJQJ^JaJmH sH +hD[�h}D�6丆JOJQJ^JaJmH sH (hD[�h}D�CJOJQJ^JaJmH sH  橃氺滌濎︗ъ黛���� �g�碣瞥|c|憿Q=&hD[�h}D�6丆JOJQJ\乛JaJ#hD[�h}D�CJOJQJ\乛JaJ0hD[�hwz�0J>*B*CJOJQJ^JaJph�)jhD[�hwz�CJOJQJU^JaJ hD[�h`$;CJOJQJ^JaJ hD[�hwz�CJOJQJ^JaJ$hD[�hwz�0J:CJOJQJ^JaJ$hD[�hwz�0J8CJOJQJ^JaJ'hD[�hwz�0J85丆JOJQJ^JaJ$hD[�hwz�0J6CJOJQJ^JaJg�h�i�r�{�|�~�旐曧���b�d�夘ヮ︻�熵品ǚ梿梪梑桻桜�1hD[�h}D�B*OJQJph�!hD[�h�'B*OJPJQJph�!hD[�h橠zB*OJPJQJph�$hD[�h}D�6丅*OJPJQJph�!hD[�h>!�B*OJPJQJph�!hD[�h騣2B*OJPJQJph�!hD[�h}D�B*OJPJQJph�hD[�h�'CJOJQJaJhD[�h}D�CJOJQJaJ#hD[�h}D�CJOJQJ\乛JaJ&hD[�h}D�6丆JOJQJ\乛JaJ&hD[�h��6丆JOJQJ\乛JaJ� �k�z�勶嬶囡栾觑祜黠��H�I�e�f�g�h�i�m�疳嗅嗅嗅酷啊拁拁i~XF#hD[�h}D�0J5丆JOJQJaJ!hD[�h}D�B*OJPJQJph�(hD[�h*叠*翱闯蚕闯镑闯辫丑�&箩丑顿摆�丑*B*OJQJ^Jph�(hD[�h}D�0J>*B*OJQJ^Jph�#�jhD[�h6+�OJQJUhD[�h}D�OJQJjhD[�h}D�OJQJU hD[�h聓�CJOJQJ^JaJ hD[�h�'CJOJQJ^JaJhD[�h�'CJOJQJaJ楎牝腧祢��S�T�U�`�a�b�c�l�怏泱篌趔黧蹉钥圆怎犜繈吭瞹nZI:hD[�h}D�0J+OJQJ^J hD[�h}D�OJQJ^JmH sH &hD[�h}D�6丱JQJ]乛JmH sH hD[�h}D�0JOJQJ^J hD[�h}D�OJQJ\乛J(hD[�h絰�0J>*B*OJQJ^Jph�#�jZhD[�h6+�OJQJUhD[�h}D�OJQJ^J(hD[�h}D�0J>*B*OJQJ^Jph�jhD[�h}D�OJQJU#�jAhD[�h6+�OJQJUhD[�h}D�OJQJ黧�������(�)�3�4�B�C�N�O�[�\�d�e�r�s��镟崖瑬俷aP?P?P?P?P?P?P?P hD[�h絰�CJOJQJ^JaJ hD[�h}D�CJOJQJ^JaJhD[�h}D�OJQJ^J'hD[�h`$;0J?OJQJ\乛J mH sH 'hD[�h絰�0J?OJQJ\乛J mH sH *hD[�h`$;0J5丱JQJ\乛J mH sH *hD[�h絰�0J5丱JQJ\乛J mH sH hD[�h�'0J-OJQJ^J hD[�h}D�0J-OJQJ^J hD[�h}D�0J+OJQJ^J hD[�h�'0J+5丱JQJ^J �€�侓凈嬼岕嶔庺忯旚玺梏� ��$�镛镛镛娃甫迬竩`v窴6K(hD[�h`$;CJOJQJ^JaJnH tH (hD[�h絰�CJOJQJ^JaJnH tH +hD[�h�'CJOJQJ\乛JaJmH sH .hD[�h}D�5丆JOJQJ\乛JaJmH sH .hD[�h}D�6丆JOJQJ]乛JaJmH sH #hD[�h}D�CJOJQJ\乛JaJ(hD[�h}D�CJOJQJ^JaJmH sH  hD[�h騣2CJOJQJ^JaJ hD[�h}D�CJOJQJ^JaJ hD[�h絰�CJOJQJ^JaJ$�%�&�0�3�婖汋涻濙︴胫连翓羳羕ZI4Z4)jhD[�h絰�CJOJQJU^JaJ hD[�h`$;CJOJQJ^JaJ hD[�h絰�CJOJQJ^JaJ(hD[�h�'CJOJQJ^JaJmH sH +hD[�h}D�5丆JOJQJ^JaJmH sH +hD[�h}D�6丆JOJQJ^JaJmH sH (hD[�h絰�CJOJQJ^JaJmH sH (hD[�h}D�CJOJQJ^JaJmH sH (hD[�h}D�CJOJQJ^JaJmH sH (hD[�h`$;CJOJQJ^JaJnH tH �����Q�_�`�a�d�f�k�p�t�u�v�w�瘤脉伥裒缫涟洂剎恖a怴恆I8I8I8!jhD[�h絰�OJQJU^JhD[�h絰�OJQJ^JhD[�h`$;OJQJhD[�h�'OJQJhD[�h}D�5丱JQJhD[�h>!�6丱JQJhD[�h}D�6丱JQJhD[�h}D�OJQJ(hD[�h}D�CJOJQJ^JaJmH sH  hD[�h絰�CJOJQJ^JaJ hD[�h`$;CJOJQJ^JaJ)jhD[�h絰�CJOJQJU^JaJ0hD[�h絰�0J>*B*CJOJQJ^JaJph�裒邛埚 ��婘嶗戺欦涽滣调恩��"�-�嗻忴戻擑書Ⅷx箬偈俸殝質i勹]Q栀嘿殝賸�hD[�h}D�5丱JQJhD[�h}D�6丱JQJ$hD[�h艻_0J@CJOJQJ^JaJhD[�h艻_CJOJQJaJhD[�h�'CJOJQJaJhD[�h}D�5丆JOJQJaJhD[�h絰�6丆JOJQJaJhD[�h}D�6丆JOJQJaJhD[�h絰�CJOJQJaJhD[�h}D�CJOJQJaJhD[�h}D�OJQJhD[�h`$;OJQJ^J�埚恩-��铲漾廂C��g�唼������������€t %d�gd�1^�d�7$8$H$^�gd�1^m$ & F��d�7$8$H$^�`�gd�1^ & F��d�7$8$H$^�`�gd�1^m$ & F��d�^�`�gd�1^m$ & F��d�^�`�gd�1^ 鼬������!�'�(�)�*�+�1�忶胝腊‰巤巤巤h巤U嶢U'hD[�h}D�6丆JOJPJQJ^JaJ$hD[�h}D�CJOJPJQJ^JaJ$hD[�h}D�CJOJPJQJ^JaJ$hD[�h騣2CJOJPJQJ^JaJ$hD[�h}D�CJOJPJQJ^JaJhD[�h|o�CJOJQJaJhD[�h}D�CJOJQJ\乤J(hD[�h}D�CJOJQJ^JaJmH sH +hD[�h}D�6丆JOJQJ^JaJmH sH (hD[�h}D�CJOJQJ^JaJmH sH 冰铲六所贴R�€�傶岤嶛廁机贱胴哦俻擾J9J hD[�h`$;CJOJQJ^JaJ)jhD[�h`$;CJOJQJU^JaJ hD[�h}D�CJOJQJ^JaJ#hD[�h}D�5丆JOJQJ^JaJ#hD[�h}D�6丆JOJQJ^JaJ hD[�h}D�CJOJQJ^JaJ hD[�h騣2CJOJQJ^JaJhD[�h}D�CJOJQJaJ$hD[�h}D�CJOJPJQJ^JaJ$hD[�h>!�CJOJPJQJ^JaJ'hD[�h}D�5丆JOJPJQJ^JaJ贱龙晰销喧漾搡Q�o�p�r�{�|�}�镛娠亥恴eO�:'$hD[�h`$;0JCJOJQJ^JaJ(hD[�h>!�CJOJQJ^JaJmH sH +hD[�h}D�5丆JOJQJ^JaJmH sH (hD[�h}D�CJOJQJ^JaJmH sH +hD[�h}D�6丆JOJQJ^JaJmH sH (hD[�h}D�CJOJQJ^JaJmH sH (hD[�h`$;CJOJQJ^JaJmH sH hD[�h}D�CJOJQJaJ)jhD[�h`$;CJOJQJU^JaJ hD[�h`$;CJOJQJ^JaJ hD[�h艻_CJOJQJ^JaJ }�~�岥嶜廂淃烕钧摞啕���� �!�胴糯煀煀煀t奮奍/2hD[�h`$;0J5丆JOJQJ\乛JaJmH sH (hD[�h>!�CJOJQJ^JaJmH sH +hD[�h}D�5丆JOJQJ^JaJmH sH +hD[�h}D�6丆JOJQJ^JaJmH sH (hD[�h}D�CJOJQJ^JaJmH sH (hD[�h`$;CJOJQJ^JaJmH sH  hD[�h}D�CJOJQJ^JaJ$hD[�h艻_0J@CJOJQJ^JaJ$hD[�h`$;0J@CJOJQJ^JaJ'hD[�h艻_0J5丆JOJQJ^JaJ!�&�A�B�C�F�e�拯睃铧瘘嫘憨�攊T>�)(hD[�h>!�CJOJQJ^JaJmH sH +hD[�h}D�5丆JOJQJ^JaJmH sH (hD[�h}D�CJOJQJ^JaJmH sH +hD[�h}D�6丆JOJQJ^JaJmH sH (hD[�h騣2CJOJQJ^JaJmH sH (hD[�h}D�CJOJQJ^JaJmH sH  hD[�h}D�CJOJQJ^JaJ+hD[�h艻_CJOJQJ\乛JaJmH sH +hD[�h`$;CJOJQJ\乛JaJmH sH 2hD[�h艻_0J5丆JOJQJ\乛JaJmH sH ��旋帻猃泯忑睚铨螨簖A�B�C�脍纱瀴s碸谏I贗00hD[�h艻_0J>*B*CJOJQJ^JaJph�)jhD[�h`$;CJOJQJU^JaJ(hD[�h>!�CJOJQJ^JaJmH sH +hD[�h}D�5丆JOJQJ^JaJmH sH (hD[�h}D�CJOJQJ^JaJmH sH +hD[�h}D�6丆JOJQJ^JaJmH sH (hD[�h}D�CJOJQJ^JaJmH sH  hD[�h艻_CJOJQJ^JaJ hD[�h`$;CJOJQJ^JaJ(hD[�h艻_CJOJQJ^JaJmH sH C�d�e�f�g�k�孇岨嶠會桛楟濥炳浸蔺撖缫连毈叕叕叕o\o\oG2(hD[�h>!�CJOJQJ^JaJmH sH (hD[�h}D�CJOJQJ^JaJmH sH %hD[�6丆JOJQJ^JaJmH sH +hD[�h}D�6丆JOJQJ^JaJmH sH (hD[�h騣2CJOJQJ^JaJmH sH "hD[�CJOJQJ^JaJmH sH (hD[�h}D�CJOJQJ^JaJmH sH  hD[�h艻_CJOJQJ^JaJ)jhD[�h`$;CJOJQJU^JaJ0hD[�h`$;0J>*B*CJOJQJ^JaJph�撖唼恂忐��������-�.�z�����M��脒辛辛辛羞羞皾妝kZI奍:hD[�h}D�CJOJQJaJ!hD[�h>!�B*OJPJQJph�!hD[�h}D�B*OJPJQJph�hD[�B*OJPJQJph�!hD[�h��B*OJPJQJph�$hD[�h>!�6丅*OJPJQJph�$hD[�h|o�6丅*OJPJQJph�!hD[�h|o�B*OJPJQJph�hD[�h騣2B*OJQJph�hD[�h|o�B*OJQJph�hD[�B*OJQJph�(hD[�h}D�CJOJQJ^JaJmH sH ���髮+�,�.�/�1�2�4�5�7�8�9�:�;�<�=�O�P���������������������gd岼"  d��gdYX� $�7$8$H$gd�1^ d�gd�1^d��7$8$H$gd�1^ %d�gd�1^������78GHM�����������疋用猱櫘免脡胻eT怦釫�hD[�h騣2CJOJQJaJ hD[�h聓�CJOJPJQJaJhD[�h聓�CJOJQJaJ(hD[�h>!�CJOJQJ^JaJnH tH hD[�h>!�6丆JOJQJaJ(hD[�h聓�CJOJQJ^JaJnH tH (hD[�h>!�CJOJQJ^JaJnH tH hD[�h}D�6丆JOJQJaJhD[�h>!�CJOJQJaJhD[�h}D�CJOJQJaJhD[�h��CJOJQJaJRe/constructing Socioecologies: System Dynamics Modeling of Nomadic Pastoralists in Sub-Saharan Africa. In The Right Tools for the Job: At Work in the 20th Century Life-Sciences (eds A Clarke, J. Fujimura), 3-44. Princeton: University Press. 45 Defra 2007 Social Research in Defra. London: Defra.     Fig. 1 about here Fig. 2 about here ���H�i�k�檶泴睂箤繉缹聦膶虒蛯螌蠈詫謱鄬駥驅髮黼谏诘牭蓪x谏寈d鞷CR鞷�hD[�h>!�CJOJQJaJ#hD[�h>!�CJOJQJ\乛JaJ&hD[�h}D�6丆JOJQJ\乛JaJ'hD[�h>!�0J5丆JOJQJ^JaJ'hD[�h}D�0J5丆JOJQJ^JaJ)hD[�h>!�6丆JH*OJQJ\乛JaJ&hD[�h>!�6丆JOJQJ\乛JaJ hD[�h>!�CJOJQJ^JaJ hD[�h}D�CJOJQJ^JaJU#hD[�h}D�CJOJQJ\乛JaJ髮魧鯇鰧���(�)�*�+�,�-�/�0�2�3�5�6�8�<�=�O�P�b�s�碲说澋峿薻]UQUQUQUQMQAMAMhD[�h>!�5丱JQJh>!�h橻5jh橻5Uh}D�B*CJOJ QJ ph#h}D�B*CJOJ QJ ^JaJphhD[�h,]DCJOJQJ\乤JhD[�h��CJOJQJ\乤J.hD[�h��6丆JOJQJ\乛JaJnH tH +hD[�h��CJOJQJ\乛JaJnH tH hD[�h��CJOJQJaJ$hD[�h��CJOJPJQJ^JaJ$hD[�h��CJOJPJQJ^JaJP�b�c�d�e�f�g�h�i�j�k�l�m�n�o�p�q�r�s�t��������������������$d��7$8$H$a$gdB``$a$gdB``gdB``$��7$8$H$`�a$gdB``$��7$8$H$`�a$gd%! gd�>�s�t�u�h}D�B*CJOJ QJ phh�:?t�u�� $�7$8$H$gd�1^<�P1恏:pD[�靶/ 班=!盃"盃#悹$悹%�芭芭 惸DpD猩陏�寕�K� 嗌陏�寕�K� �http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sharkey%20KJ%22%5BAuthor%5DyX侓;H�,俔膮'cカD猩陏�寕�K� 嗌陏�寕�K� �http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bowers%20RG%22%5BAuthor%5DyX侓;H�,俔膮'cカD猩陏�寕�K� 嗌陏�寕�K� �http://www.ncbi.nlm.nih.gov/pubmed?term=%22Morgan%20KL%22%5BAuthor%5DyX侓;H�,俔膮'cカD猩陏�寕�K� 嗌陏�寕�K� �http://www.ncbi.nlm.nih.gov/pubmed?term=%22Robinson%20SE%22%5BAuthor%5DyX侓;H�,俔膮'cカD猩陏�寕�K� 嗌陏�寕�K� �http://www.ncbi.nlm.nih.gov/pubmed?term=%22Christley%20RM%22%5BAuthor%5DyX侓;H�,俔膮'cカjA    iI02���� 0@P`p€�����2�� 0@P`p€����� 0@P`p€����� 0@P`p€����� 0@P`p€����� 0@P`p€����� 0@P`p€�8X�V~ OJPJQJ_HmH nH sH tH J`�J  Heading 1d�@&\$/5丅* CJ"KH$OJPJQJ\乤J"mH phA sH DA`��D Default Paragraph FontRi@��R  Table Normal�4� l4�a� (k ��(No List .W@��. *B*^Jph�B﨩��B j small1B*CJOJQJ^JaJphR﨩��R j h1black1)5�>*B*CJOJQJY(\乛JaJph2X@��2  j @Emphasis 5乗乛JHjABH ?f�Comment Subject5丆J\乤JZ�R�Z ?f�Comment Subject Char5丆J\乤JmH sH tH>@> !GUHeader �H�$d��>��>  GU Header Char^JmH sH tH> @"> #GUFooter" �H�$d��>��1> "GU Footer Char^JmH sH tHD� �BDGURevision$CJ_HaJmH sH tH b䁖�Rb 碽�Default %7$8$H$-B*CJOJQJ^J_HaJmH phsH tH \��a\ �>Heading 1 Char'5丅* CJ"KH$OJQJ\乛JaJ"phA JV�qJ �>FollowedHyperlink>*B* ^Jph€€0���0 "K pseudotab2^J^﨩�^ ]4� auth_list)d�[$\$CJOJPJQJaJmH sH 8���8 ]4�slug-pub-date5^J4﨩��4 ]4� slug-vol3 5乗乛J8���8 ]4� slug-issue3 5乗乛J2﨩��2 ]4� slug-pages5^J2���2 �G person_name^J2(��2 &vB Line Number^JHH 1l� Footnote Text 0d��CJaJT��T 0l�Footnote Text CharCJ^JaJmH sH tHD&�!D l�Footnote ReferenceH*^J���3� R0~ Table GridD:V3�0k� 3CJPJ_HaJmH sH tH :��A: )�goog_qs-tidbit1^J<���Q<� cb�apple-style-span^JH﨩�aH Umwcitation-abbreviation2^JN��qN Umwcitation-publication-date^J:﨩��: Umwcitation-volume^J8���8 Umwcitation-issue^J<�﨩��<� Umwcitation-flpages^J8䁖��8 wz�goog_qs-tidbit-0䁖�� wz�doi䁖�� wz�ftZ^ �Z wz�0 Normal (Web)>d�めCJOJPJQJaJtH (䁖��( 絰�slug-doi"䁖�" `$;pmid1PK!倞��[Content_Types].xml瑧薺�0E鲄䞍卸豶�(ヘ微Iw},�浔-j弰4 蛇w旄P�-t#b螜{U畯銧擉T閁^h卍}悒)蛔*1P�' 揯鬃W孱0)櫐T闉9<搇�#ぼ$yi}佸;纞@囨�(顚跄H滖男u�* D谞z內/0娗盃瘥� $€� X3aZ⒁锣,癉0j~�3叨蝏沩~i>�赝3縗`�?�/�[�G殁\�!�-跼k.搒粣..椃碼婵�?��PK!ブх�6 _rels/.rels剰蟡�0 囷吔冄}Q颐%v/C/�(h"�脎O� �劋秣�=孂釘� 毆免C?薶醰=�偵叅�%[xp啠{鄣_糚眩<�1�0�堎O糝瓸d焉襃E�4b$q_�槥�6L吁R�7`畯ㄉ�趁0虨O��,錏n7擫i鋌〃/鉙綈╡械根铸��PK!ky���theme/theme/themeManager.xml 蘉 � @醹愘7c�(Eb菜�C�A菭覠圩邈�7芜諞K Y,� 奺�.埛饇,�ㄚH�,l崆骈x纱�逫萻Q}#諓叚递 值+�!�,較�$j=婫W栌�)釫�+& 8���PK!柕�Ptheme/theme/theme1.xml靁Oo�6�豾 toc'vu娯睕-M膎�i墫豍襂}阢€煤a�豰嘺[�廿�4�:l携癎R捙X^�6貖�>$�┇最� !)O赹齬虲$駓@摪磔�/瓂H*�橊劥�)戅祶鬟粖譛Db俙}"譹蹕擩讞枻肵^�)I`n蘀�紛p)�杵li筕[]�1M<斷绒彥O蠵擊6r�=瘔抸纆b營g吜u崘S賓b嘱€O缽嗕掘肦罝郢櫉反qu 痝嫎Z岸串o~俸lAp發x妏T0�+[}`j纂鹾絲A�帮儲V�2虵蒳朄鰍瀡分�5\|夻蕼汰Nвle瞂�ds趈cs倭惻7琊嵨f坊赅 肉W琊�+唻7爤唁`�陲g� 葮稠J�雷j|唫h(�驞-姷咩� dX�﹊J曝�(钼x$(� �:隶;渌�!� I_蠺到S 1w犍鳢�?E��?勉?ZB为m渼錟/魁煜��?瀪篁�誼Y�'奎鼀5襣&螊/燑鲮蓩�>籊餗丟e鴲艱�眢3Vq%'#q��域娡$�8翚K秊�敉)f檞9:牡�澹 x}r�x墘�渨⒇顁�:\TZaG�*檡8I耲鎎R祈c|X呕�强絀 u3KG駈D1�NIB襰鼆� 眍R曦u楘侹>V�.EL+M2�#'歠嫸i ~橵� l硔u8z�篐� �*�鏄�:�(W�鈽� ~J攘T鴈\O*餿HG絸HY垫�}KN吡P�*菥甩眿�T鸭�9/#辐A7聁Z��$*c?��韖U咤n嗚w�N蝴%幓O�穒鑸4 =3跅P獫 愉锸1弇 \\9�肭戸�釳負�2a鸇鵠�;Yt籠繇[x掛簌嶇]蓕Wr�|蒥斚g-闯� eW� �)6-r及CS�j嗜 i歞 鸇袊A轿�IqbJ#x剃簝 6k愢�#A凷h半�&蕦t(Q�%焯p%m崌&]賑aSl=怷眚�狳\P�1籑h�9�M喱蘓甦DA碜aV譈潤[輬fJ澝璓|8� 謩A�V^咉筬 蘃犿n鬓�-� �"醼d>襷消╪湐菉� €丞饝>錆b�窎&�芪猡2黄v棍弈Ky霞ん鯠:菠湝,AGm\nz惹i�脵��.u蠂YC�6霴Mf撳3o秗跑$5叺麥翹H匱[XF64蘐,褱薓0隕)`#�5Y僠�;寒%�1馯儋�m;麣昍>QD ⑧嵷D靋p�U�'��&LE�/p彟璵︓鉁%]枢�8fi劤r玈4蟙 7y\萡轏鈦n暡逦瘖I� R��3U魚7+侖€赘#澂m� q˙iD€屏��笅卛*窵6�9�m蝁&困鰅�咠HE倫=(K&鶱!V霄.K抏凩D暷暕{D �釜鱲E軎歞e类N茻麨e�(訫N9邷R旖6吻&3(逯a有漩/DU韟�<遻藠鑹Y浾瘸槙秱V桍�)�9穁[辨4^n媛��5喠�!J峋�?�Q�3鹐Bo–��羾M �Ⅹ抦<�.恦p崜戳Y觙瓝禯綴_p�=al-資鼄Nc蜋宋膳�4vfa侵vl々脸'S喥鵄�8苵�*u猓{噼-高�0%M0�7%仭��<€浞鸵嵖��PK! 褠煻'theme/theme/_rels/themeManager.xml.rels剰M �0匃倃oo雍�&輬协�勪5 6?$Q祉 �,.嘺緳i粭澤c2�1h�:闀q毩m胳嶡RN壻;d癭値o7�g慘(M&$R(.1榬'J摐袏T鶂�8V�"&A然蠬鱱}狇�|�$絙{�朠�除8塯/]As賲(⑵锑#洩L蔥汉倪��PK-!倞��[Content_Types].xmlPK-!ブх�6 +_rels/.relsPK-!ky���theme/theme/themeManager.xmlPK-!柕�P�theme/theme/theme1.xmlPK-! 褠煻'� theme/theme/_rels/themeManager.xml.relsPK]� &'()*+,-./0123456�������������������������������������������� ���� ���� ���� ���� ���� ����������������&'()*+,-./01234569 ������� b (a&�(B.@8�>BM\U蚥苆|p{2�螉跀髿摙卑�掷.�纲2��忈扁恒r�T�@�嗙�@�Z�橃g��m�Q�楎黧�$�裒贱}�!�C�撖��髮s�u������������������������������������������������������������� �(B;鱰/�e� ���P�t�u��������������朕,�M�筢>�U�E�忓存���l�w�{�午夔葭2�?�E�涜╄絷?�]�诫��燥��9�報X��X��X��X�晫X�晞X�晞X�晞X�晫X��X��X��X��餷��,2�$2�-唉�%�9�>塺�撜����@����€€€�餤�瘌�( � �餦� � # � €�#"� �€€?�� �餦� � # � €�#"� �€€?�� �養 �S ���� ?��)�9�$��(t�$��(�t��7繧 tED罥 4CD翴 鬌D肐 鬐D腎 4ED臝 $P 艻 銵 荌 銷 菼 dO 蒊 $N 蔍  薎 $M 蘄 dM 虸 $O 蜪  螴  蠭  袸 銶 襂 銸 覫 隂 訧 旉� 誌 霙 諭 旊� 譏 鞗 豂 造� 買 旍� 贗 T鞗 跧 T霙 躀 噪� 軮 旈� 轎 蚤� 逫 躁� 郔 T闆 酙 �(� 釯 \%� 鉏 &� 銲 �%� 錓 �%� 鍵 �(� 鏘 \(� 鐸 �&� 镮 �&� 闕 \&� 隝 '� 霫 \'� 鞩 �'� 領 �'� 颕 磜�餓 魓�馡 ty�騃 4y�驣 魎�鬒 4v�鮅 tw�鯥 tx�f���������AK``v������+33:�������YY <� <�蕂蕂Y{Y{||陓陓﹦﹦虨虨氓氓      !"#$%&'()*+,-./0123456o������  GQt}}������'18<<�������[[ <� <�蘯蘯[{[{ | |靯靯珓珓螢螢钮钮  !"#$%&'()*+,-./0123456 94*€urn:schemas-microsoft-com:office:smarttags€place€87*€urn:schemas-microsoft-com:office:smarttags€City€=6*€urn:schemas-microsoft-com:office:smarttags €PlaceName€=5*€urn:schemas-microsoft-com:office:smarttags €PlaceType€B2*€urn:schemas-microsoft-com:office:smarttags€country-region€;1*€urn:schemas-microsoft-com:office:smarttags€address€:0*€urn:schemas-microsoft-com:office:smarttags€Street€>'*€urn:schemas-microsoft-com:office:smarttags €PostalCode€9"*€urn:schemas-microsoft-com:office:smarttags€State€ ` 7654721065475647'6547"256472567'24242424242424242424242��y^刕����f�o�嚳徔>�贬���闭�蹿�惫�皑�飞�词�冎壷愔椫白樽钭挢钬︐迟刭葙厂�驰�碍�厂�冝嵽��(�2�狈�齿�袄�产�辞�迟�锄�呩厢葬光骡赔题砚剽层广俱陪闭�产�滆ヨ碎虚仃彡"�*�2�<�侦仂G�L�揞犷搀贵)�.�楑汋濙磅篚����� �&�-�1�9�B�H�M�P�X�g�l�r�|��婗G�U�犄眵-�2�K�P�Z�_�c�e�f�h�i�k�l�n�o�s�t���� � `���-�-2181�8�8決烸璠筟~v€v靨韛#�&�鑻雼魮鰮螖覕W�[�礊稙x�{�h�n�茂漂#�*�~�偧勰峙F�6�<�P�蔡铺沼苡≈ぶ��阙溱?�A�0�2�v�|�ц╄z�}��"���楑汋亏流c�e�f�h�i�k�l�n�o�s�t�3333333333333333333333333333333333333333z�z�c�c�e�f�f�h�i�k�l�n�o�s�t�咗國橒汎汎涾涾滧滧濜濜烒烒燌燌狓狓▲▲ⅧⅧxxz�z�c�c�e�f�f�h�i�k�l�n�o�s� 嘼� �*���������檥� :叹7���������抌B|G谾�����������:�S����������.ら�����������>T#N:���������44A|G谾���������鶰QC東㤘����������5=G�3���������憕ni4]鑖���������軶Aw键d���������勑剺⺗勑`剺﨏JOJ QJ ^JaJo(.€劆剺⺗劆`剺⺗J.�刾凩�^刾`凩�^J.€凘 剺⺗凘 `剺⺗J.€�剺⺗�`剺⺗J.�勦凩�^勦`凩�^J.€劙剺⺗劙`剺⺗J.€剙剺⺗剙`剺⺗J.�凱凩�^凱`凩�^J.勑剺⺗勑`剺⺗J.劆剺⺗劆`剺⺗J.�刾凩�^刾`凩�^J.€凘 剺⺗凘 `剺⺗J.€�剺⺗�`剺⺗J.�勦凩�^勦`凩�^J.€劙剺⺗劙`剺⺗J.€剙剺⺗剙`剺⺗J.�凱凩�^凱`凩�^J.勑剺⺗勑`剺⺗J.劆剺⺗劆`剺⺗J.�刾凩�^刾`凩�^J.€凘 剺⺗凘 `剺⺗J.€�剺⺗�`剺⺗J.�勦凩�^勦`凩�^J.€劙剺⺗劙`剺⺗J.€剙剺⺗剙`剺⺗J.�凱凩�^凱`凩�^J. 勑剺⺗勑`剺﨩JQJo(佛劆剺���^劆`剺⺗J.刾剺��p^刾`剺⺗J.凘 剺��@ ^凘 `剺⺗J.�剺��^�`剺⺗J.勦剺���^勦`剺⺗J.劙剺���^劙`剺⺗J.剙剺��€^剙`剺⺗J.凱剺��P^凱`剺⺗J.勑剺���^勑`剺﨏JOJQJo(佛€劆剺���^劆`剺﨏JOJQJo(佛€刾剺��p^刾`剺﨏JOJQJo(佛€凘 剺��@ ^凘 `剺﨏JOJQJo(佛€�剺��^�`剺﨏JOJQJo(佛€勦剺���^勦`剺﨏JOJQJo(佛€劙剺���^劙`剺﨏JOJQJo(佛€剙剺��€^剙`剺﨏JOJQJo(佛€凱剺��P^凱`剺﨏JOJQJo(佛勑剺���^勑`剺﨏JOJQJo(佛€劆剺���^劆`剺﨏JOJQJo(o€刾剺��p^刾`剺﨏JOJQJo(ю€凘 剺��@ ^凘 `剺﨏JOJQJo(ю€�剺��^�`剺﨏JOJQJo(ю€勦剺���^勦`剺﨏JOJQJo(ю€劙剺���^劙`剺﨏JOJQJo(ю€剙剺��€^剙`剺﨏JOJQJo(ю€凱剺��P^凱`剺﨏JOJQJo(ю勑剺⺗勑`剺⺗J.劆剺⺗劆`剺⺗J.�刾凩�^刾`凩�^J.€凘 剺⺗凘 `剺⺗J.€�剺⺗�`剺⺗J.�勦凩�^勦`凩�^J.€劙剺⺗劙`剺⺗J.€剙剺⺗剙`剺⺗J.�凱凩�^凱`凩�^J.勑剺���^勑`剺﨏JOJQJo(佛€劆剺���^劆`剺﨏JOJQJo(o€刾剺��p^刾`剺﨏JOJQJo(ю€凘 剺��@ ^凘 `剺﨏JOJQJo(ю€�剺��^�`剺﨏JOJQJo(ю€勦剺���^勦`剺﨏JOJQJo(ю€劙剺���^劙`剺﨏JOJQJo(ю€剙剺��€^剙`剺﨏JOJQJo(ю€凱剺��P^凱`剺﨏JOJQJo(ю 勑剺⺗勑`剺﨩JQJo(佛 劆剺⺗劆`剺﨩JQJo(o 刾剺⺗刾`剺﨩JQJo(ю 凘 剺⺗凘 `剺﨩JQJo(佛 �剺⺗�`剺﨩JQJo(o勦剺���^勦`剺⺗J.劙剺���^劙`剺⺗J.剙剺��€^剙`剺⺗J.凱剺��P^凱`剺⺗J.劋剺⺗劋`剺﨩JPJQJo(-€ 則剺⺗則`剺﨩JQJo(o€ 凞剺⺗凞`剺﨩JQJo(ю€ � 剺⺗� `剺﨩JQJo(佛€ 勪 剺⺗勪 `剺﨩JQJo(o€ 劥剺⺗劥`剺﨩JQJo(ю€ 剟剺⺗剟`剺﨩JQJo(佛€ 凾剺⺗凾`剺﨩JQJo(o€ �$剺⺗�$`剺﨩JQJo(ю勑剺���^勑`剺﨏JOJQJo(佛€劆剺���^劆`剺﨏JOJQJo(佛€刾剺��p^刾`剺﨏JOJQJo(佛€凘 剺��@ ^凘 `剺﨏JOJQJo(佛€�剺��^�`剺﨏JOJQJo(佛€勦剺���^勦`剺﨏JOJQJo(佛€劙剺���^劙`剺﨏JOJQJo(佛€剙剺��€^剙`剺﨏JOJQJo(佛€凱剺��P^凱`剺﨏JOJQJo(佛 �5=G`� ��^� �5=G��嘼� 憕ni檥� 44A軶Aw�.抌B2鶰QC��>������������������������������������������������������ �� (rd�                                                     �诿        e      xh<���0��8  #�!""#+ $-%(&'()"*0+,0-.$/101203040506&7/89d^Cl欼�Oa�0H �h82 rr蕕lz �;�.0����� v#a�DQ��%�5�'���!/� lz -m�"82 � v#�-杁 唜(�;�.擶逽\k�/@K�>}+508攊?B4 G`E�%�5jg9d^ �:jg9� A=@K�>[藄 抴D� A= G`E0H Cl欼鶶#w ddsA\K楤巌瀒郟i#~ 擶逽馺DY�"^-m�",KMc�:�-杁�h唜(楤巌瀒郟8攊馺DY�k抴D LFq}+50t 雚�O[藄鶶#wPEx LFqi#~rr蕕DQ�Jn鼅\k�/��9L5�贑l�6揨鷕�xD岼綻�� B峞W^lE莍阰/�9,芣 i1 8P " �" �> 蠥 驜 Jf 衜 礦 J %! 7: *[ e/ E? G j 7烞�'恌淭sXIcQq穜� 4�S^F齓鎛��[/w:榳�,�6�7_Bw� .%' 2遠閤<=DIw�u35�% +�6+7 8d鸰uR�6I鑏he�嘖oS沊襵) �7 �9 sH 釹 僞 u!#X!蘗!K"颪"梋"馟#gI#1]#瀋#&e#�5$錕$ -%�.%凨%SY%qp%縂&7'w:'u(v#(�1(6;(�$)^*)7@)� *I*\i*GB+E+i+�4,䁖,╯,Tu,!-�)-(;-Pn-r.� .玒..{_.!s.C/=d/u/�0$y0�0�$1dR1衦1�2+2騣2�3O3磘3=4[%5-5橻526碏67B 7#8(8�)8@8肬8�9�29u=9奷9�:�:� :p#;`$;.;�5;T6;wP; q;�2<�{5<�Y= Z=ra==�>6.>=>�=>蕕>�?�:?縤?!@�!@�$@Cq@�A�8A続AA2vA&vBBpC�?C�+D#6D,]D�E�=E]E瞛EuE&zEA{E�FkFF�G ;G0H夿H鄚H�I\I "I�7J�:JEJ"K8$K�3K賉K趃KZ{K;HLeULM:5M-6M?M驛M罣M噃NO +O�,OgFO LOPSfAS鄍S蝪S�T�6Tz]TclTGU1VM$V�(V緎V.W !W?WUW鮤W�.X�0X楴XkX駓X� YY$Y�%Y1Y86Y�=ZUpZ祑ZB\p(\?+\W] \]�^�^�1^N;^資^�_ "_艻_#`B``�a,hab[QbCVb蘞b踥bR c^)cv9c窲cQ!d鵌d抩d� eof-2f擳fgWf \f琾f gR7gBGg滿g蠸g*cg3cg�hph�=hJ>hRTh筰h4i]!i3Ji�j�$j[Ej蟘j蕒j�k�k +k�6k�l�l�8l繳l瀈l�m=SmhSmB^mxm5Qn?o9o 'o_oCko8p�p齡p鑡pirpiq�q~q焧q�r�0r�;r�?r旳r辀r峹r{&s� �;��=�@c�Q���!�c$�輋�#�]2�mh�Fr���R�耈�i����-�w5�葉�=D�-i�Ws�ru�� ��?�踋�﹐�2��'��.�5E�爏���*�6+��9�*Q�2\�藄�J���F�遟�+� _�Oo�C}�5 �� ��#�~*�@.�@=�竲�D ��� ��'�i,�8�YX�iV�嶸��C�Oc�甦�鬽�聓�~�m �).��5�錎�臤�u\�7f��8��>�"e�p�� �R �����r=�釪�~M�镾�=f�爅�裫�無�聀���'I�)�o^�`"�C$�銲�aS�cb��+�X�����/1�2C�HJ�H\�}7�oS�e�鴙�-�.��9�醱�� �S�SX�~��0�齭���9(�.6�<�鍮�-i�r�別���~�黇���[�=�扽�*q���b����+�LC�Y�€T�錿�RL�uV��&��8� 9�e���Y�噈�簑��)��8��膁�o�眫�����萓�� �N�汼�PZ�泏�zh�&z�>���8g�趍�wz�r��,��>�&?�{�:�QL�����l5�歟�ru��1��>����'�-N�醟�€��$�*�燫�謢�� �,�e/�` �3�>\�?f�n ���?c�|o�~�C*�Ok�砽�鐇�_.��E� d�噠�L)�,>�梥�0v���(1�絎�h�Q�T�7V�廧��5�筁�IX��� �臦�淩�]Z��豈�3e�s�6?���4�裌�re��$�?/�hx�@8�Gf�r� m��"��:�禟�0�衯�U/�6�=�1��7��;�鯲�T�6��1��5�=]���宐�dg�搑��8�qU�慾�{�.��8�馻�j�am�朙�m�������\l�7{���-��=�F�薒�穂�籲�搘���*,�7e�錥�鈛�$y�MP�� �鮙� X�t�D[�繤��緖�沊�2s�蠽�齔�4g�飀��J�:�n�.q�o����'��+�鶁�jn�i�OQ�榠�渏�鰖���� �G��n/�fA�@�.=��>�'T�Fs���'�e(�]4��?�廟�蟇�終�T�l� L�BR�5�%�l��+�L4�蚛� ��*�SI�蟨�m����4�@�_D�%L�3n�H�燚�碶��"�� �?-�絰�{�G��5�俒�骫�nu��)�h��>�}D�踜�扨�碽��%��/�L8�/I�b��� Z�Cu� � M�罬�NW���>!�H�恆�Cd�c�e��@€侘侘H2侘侘@GG7�xx@xx @x@��Unknown������������G��*郃x� �Times New Roman5�€Symbol3.� �*郈x� �Arial7.� � @�VerdanaG=�€  �帑j�MS Mincho-�3� fg7.����@ �CalibriC�TTE2AF8C90t00C�TTE2B04B78t00C�Berkeley-Book71� CourierO �FrutigerLTStd-LightO.� � €k9�Lucida Sans Unicode7��燢@�Cambria5.� �.醄`�)�TahomaC�TTFF5A9238t00;�AdvPTimes7 �ArialMT=�MSTT31c861=�MSTT31c98b=�MSTT31c935E�Optima-RegularI.�€ ����唛?�?Arial Unicode MS?=� �* �Courier New;�€WingdingsA��犽 B�Cambria Math"A�鹦�h 岆f 岆f�,毽%Q�+~�%Q�+~�!���n�亗24鬻鬻 3僸�HX �$P�������������������������wHhttp://www.ncbi.nlm.nih.gov/pubmed?term=%22Robinson%20SE%22%5BAuthor%5Dx[Fhttp://www.ncbi.nlm.nih.gov/pubmed?term=%22Morgan%20KL%22%5BAuthor%5Dx] Fhttp://www.ncbi.nlm.nih.gov/pubmed?term=%22Bowers%20RG%22%5BAuthor%5Dx6y Ghttp://www.ncbi.nlm.nih.gov/pubmed?term=%22Sharkey%20KJ%22%5BAuthor%5Dxk2/http://dx.doi.org/10.1016/j.watres.2009.01.033x"c0http://dx.crossref.org/10.3201%2Feid1505.081419x*!3http://dx.doi.org/10.1111/j.1477-9552.2006.00052.xx个?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€�����������������������������������������������������������������������������������������������������������������������������������     ������������������$�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������Root Entry�������� �F€瞌鐀喫&€Data �������������1Table�����鈛WordDocument����>�SummaryInformation(������������DocumentSummaryInformation8��������CompObj������������y���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ���� �F'Microsoft Office Word 97-2003 Document MSWordDocWord.Document.8�9瞦