Book Chapter
Details
Citation
Chicano F, Whitley D, Ochoa G & Tinós R (2024) Generalizing and?Unifying Gray-Box Combinatorial Optimization Operators. In: Parallel Problem Solving from Nature – PPSN XVIII. Lecture Notes in Computer Science. Springer Nature Switzerland, pp. 52-67. https://doi.org/10.1007/978-3-031-70055-2_4
Abstract
Gray-box optimization leverages the information available about the mathematical structure of an optimization problem to design efficient search operators. Efficient hill climbers and crossover operators have been proposed in the domain of pseudo-Boolean optimization and also in some permutation problems. However, there is no general rule on how to design these efficient operators in different representation domains. This paper proposes a general framework that encompasses all known gray-box operators for combinatorial optimization problems. The framework is general enough to shed light on the design of new efficient operators for new problems and representation domains. We also unify the proofs of efficiency for gray-box hill climbers and crossovers and show that the mathematical property explaining the speed-up of gray-box crossover operators, also explains the efficient identification of improving moves in gray-box hill climbers. We illustrate the power of the new framework by proposing an efficient hill climber and crossover for two related permutation problems: the Linear Ordering Problem and the Single Machine Total Weighted Tardiness Problem.
Status | Published |
---|---|
Title of series | Lecture Notes in Computer Science |
Publication date | 31/12/2024 |
Publication date online | 30/09/2024 |
Publisher | Springer Nature Switzerland |
ISBN | 9783031700545; 9783031700552 |
People (1)
Professor, Computing Science